Ultrasonic Team (T. Yanagisawa, Hokkaido Univ,)    


3-6 重い電子系に対する超音波実験

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第3章 超音波実験の測定手法

 

3.6 重い電子系に対する超音波実験


続いて,$f$電子の遍歴性が強く,混成効果が効いている重い電子系に対する超音波実験について述べる.CeCu$_6$やCeRu$_2$Si$_2$等のスピン自由度に由来する近藤効果が効いている系では,一般的に多体効果の影響は全対称表現$¥Gamma_1$に対応するバルクモジュラスに現れ,対称性を低下させる横波弾性定数には現れない.一方,Coxらが提唱する非クラマース$¥Gamma_3$二重項に対する近藤効果である四極子近藤効果などのマルチチャンネル近藤効果ではその異方性を反映して横波弾性定数に$-¥log T$の温度依存性が現れるなどの理論予測がある[40].後者のマルチチャンネル近藤効果の実験的検証はまだ中途の段階にあるので,ここでは従来型の磁気近藤効果由来の重い電子系に於ける縦波弾性定数の温度依存性の典型例を示そう.

先ずはL$¥ddot{¥rm u}$thi先生の超音波電子物性の教科書から一枚の絵を抜粋する.これは重い電子系の縦波超音波の典型を表した模式図である.3つの領域に分けて説明しよう.


図18 典型的な重い電子系の縦波弾性定数の温度依存性


(1) $T > ¥Theta_D$の高温領域とバックグラウンド

電子-格子相互作用の影響が無い場合,弾性定数は降温と共にほぼ線形に上昇する.もし,調和近似を基にフォノン間の相互作用を考えなければ,弾性定数は温度に依存せず一定となり,熱膨張は存在しない.しかし,一般的に弾性定数は昇温と共に減少し(軟化し),固体は膨張する .それは調和近似の破綻を意味する.現実の系では非調和項の影響から$T > ¥Theta_D$の温度領域で弾性定数のバックグラウンドは$-T$に比例した温度依存性を示す.$T = 0$でそのバックグラウンドは$-T^4$に比例して低温で一定値に収束する.(図の点線)これはデュロン・プティ則により格子比熱が$T^3$に比例(即ち,内部エネルギーが$T^4$に比例)することに対応している.$-T^4$の温度依存性が成り立つ温度領域を決めるのは一般的に難しく,その温度依存性は現象論的に

C_{ij}=C_{ij}^0-¥frac{s}{¥exp(t/T)-1}
(25)

と表す事ができる[41].($s, t$は任意の定数)

(2) $T ¥sim ¥Delta$の結晶場効果

結晶場レベルの分裂幅$¥Delta$に対応した温度領域で,四極子感受率に起因するソフト化が生じる.例えば立方晶O$_{¥rm h}$群に於いて縦波弾性定数$C_{11}$は,バルクモジュラス$C_{¥rm B}$と$¥Gamma_3$対称性の$(C_{11}-C_{12})/2$モードの線形結合の形で$C_{11}$=$C_{¥rm B}$+4/3$(C_{11}-C_{12})/2$と表されるので,$¥Gamma_1$対称性の電気十六極子$(O_4^0+5O_4^4)$と,$¥Gamma_3$対称性の四極子$O_2^2$の感受率があらわれる.

(3) $T < T^¥ast$の強い電子-格子(グリューナイゼンパラメータ)結合¥¥

重い電子系では,$T < T^¥ast$において音響フォノンによる準粒子の散乱が無視できなくなる. ($T^¥ast$は多体効果の特性温度で磁気近藤効果の場合$T^¥ast ¥sim T_{¥rm K}$と考えてよい.)それが起源となった強い電子-格子相互作用によりポテンシャル変形が生じ,体積変化に対応する縦波モード(即ち$¥Gamma_1$対称性の歪み$¥epsilon_Β = ¥epsilon_x+¥epsilon_y+¥epsilon_z$に対応するバルクモジュラス$C_B$を含むモード)において弾性異常が現れる.この効果は一般的に対称性を低下させる歪みに対応する横波モードには現れない.この音響フォノンと準粒子の結合はグリューナイゼン定数によって現象論的によく説明できることが知られている.グリューナイゼン定数は熱力学的関係式$(¥frac{dT}{d¥epsilon})_S = (¥frac{¥partial T}{¥partial S})_{¥epsilon}(¥frac{¥partial S}{¥partial ¥epsilon})_T$から以下のように定義される($S$はエントロピー)

 ¥Omega = ¥alpha_{¥rm T} ¥frac{C_{¥rm B}}{C_{¥rm V}}=-¥bigg( ¥frac{¥partial ¥ln T}{¥partial ¥epsilon_{¥rm V}} ¥bigg)_S
(26)

ここで,$α_{¥rm T}$は等温過程における熱膨張係数,$C_{¥rm B}$はバルクモジュラスで等温圧縮率$¥kappa$の逆数として定義される. $C_{¥rm V}$は定積比熱である.図19と図20にそれぞれCeCu$_6$とCeRu$_2$Si$_2$の弾性定数の温度依存性を示す[42,43].CeCu$_6$は220 Kに斜方晶から単斜晶への構造変化に伴うソフト化が横波$C_{66}$モードに観られる[43].より低温領域では明瞭な結晶場効果が縦波$C_{11}$, $C_{22}$, $C_{33}$と横波$C_{44}$に現れ,低温で収束するが,$T < 5$ Kで近藤一重項の形成が始まるにつれ,$C_{11}$は低温でさらにもう一段階ソフト化を示す[44].CeRu$_2$Si$_2$は対称性を低下させる横波モードに明瞭な結晶場効果は観られず,体積歪みに関連した縦波モード$C_{11}$, $C_{33}$に特に顕著なソフト化が観られる.このような体積歪みに関係した縦波モードのみに現れる弾性異常は$4f$電子が遍歴し準粒子バンドを形成していると考えられているCeSn$_2$, CeNi, CeNiSnなどにも共通して観られる.


図19 CeCu$_6$の弾性定数の温度変化 [43]



図20 CeRu$_2$Si$_2$の弾性定数の温度依存性 [42]


結合定数$¥Omega$が正で大きな値を持つ場合,近藤一重項が形成されると共に体積収縮が起こることが熱膨張測定などで確かめられている.これをKondo Volume Collapseという.$T = 0$におけるその体積変化の大きさは多体効果の特性温度$T^¥ast$(近藤温度のオーダー)を用いて

¥epsilon_{¥rm V}^0 = -n k_{¥rm B} T^¥ast ¥frac{¥Omega}{C_{¥rm B}}
(27)

と見積もることができる.ここで$n$は単位体積あたりの磁性イオンの数であり,$n ¥sim 10^{28} [m^{-3}]$程度であるとする.重い電子系において実験的に求められたグリューナイゼン定数の典型的な値は$¥Omega ¥sim 100$程度,多体効果の特性温度を$T^¥ast ¥sim 10$ [K], ボルツマン定数$k_{¥rm B} = 1.38 ¥times 10^{-23} $[J K$^{-1}$], バルクモジュラスを$C_{¥rm B} ¥sim 10^{11}$ [J m$^{-3}$]とおくと,体積歪みの大きさは$¥epsilon_{¥rm V} ¥sim 10^{-3}$となり,研究室レベルのX線装置でも検出できるような,かなり大きな変化であることがわかる.実際にCeRu$_{2}$Si$_{2}$で格子定数の変化が観測されており,$T ¥to 0$の外挿値は$¥epsilon_V ¥sim 1.4 ¥times 10^{-3}$程度と見積もられ[45],上式で良く再現される.
一方,URu$_2$Si$_2$やUPt$_3$などアクチノイド系の重い電子系では上記のグリューナイゼン定数による弾性応答が成り立たない例も報告されている[42,46,47].これらの系では超音波の周波数が電子散乱時間に近づき,超音波の伝搬において断熱近似が成り立たなくなっていることが推測され,エネルギー散逸を考慮した等温弾性率を用いた特別なアプローチが必要である.


(第4章に続く)


3-5 多極子秩序における弾性異常

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第3章 超音波実験の測定手法

 

3.5 多極子秩序における弾性異常


まずは歪みと線形結合する電気四極子が秩序を起こす典型物質の弾性応答を紹介しよう.反強四極子(AFQ)秩序を起こす物質の典型例といえば先ほど紹介したCeB6である[24].この物質はTQ = 3.3 KでΓ5型の四極子が秩序波数 k = [1/2 1/2 1/2]で整列するAFQ秩序を起こし,さらにTN = 2.3 K以下で反強磁性(AFM)秩序を示すことが中性子散乱実験,NMR,共鳴X線散乱実験で確認されている.図13にCeB6の弾性定数C44の低温部拡大図を示す.Γ8四重項結晶場基底状態はAFQ秩序の四極子-歪み相互作用によって2つのクラマース二重項に分裂する.そのためTQでC44のソフト化は止まり,低温でゆるやかに上昇する.TQ以上の常磁性相では1/Tに比例したキュリー項があるため,Γ8四重項が反強四極子秩序によって2つのクラマース2重項に分裂することで,四極子感受率-χΓ5が逆カスプ状に折れ曲がった結果としてこの弾性異常が理解できる.これは反強磁性磁化率において副格子磁化に平行に磁場を加えたときの磁化率χ||に現れるカスプ状の応答を垂直方向にひっくり返したものと類推することができる.

同じような振る舞いは正方晶DyB2C2の弾性応答にも観られる.DyB2C2は正方晶系で初めて反強四極子秩序が報告された物質である[25].TQ = 24.7 KでOxy型のAFQ秩序を示し,TNN = 15.3 KでAFM秩序を示すことが共鳴X線散乱実験や磁場下における中性子散乱実験で検証された [26, 27].Dy3+はJ = 15/2のクラマースイオンでありDyのサイトシンメトリーC4hの下で4E1/2(+)4E3/2と8つのクラマース二重項に既約分解される.比熱で見積もられた磁気エントロピーがTQでRln4に達することから,結晶場基底状態は2組のクラマース二重項が擬縮退した擬四重項基底状態になっていると考えられる.これらを踏まえて弾性定数を観ると,全ての弾性定数にソフト化が現れていることから [28],選択則より基底状態は対称性の異なる二つのクラマース二重項の組み合わせに限定される.さらにTQにおいて秩序変数Oxyの応答を観る弾性定数C66にはCeB6で弾性定数C44に観られたような)逆カスプ状の折れ曲がりが観測される.常磁性相におけるソフト化の変化量を比較すると四極子Oyz, Ozxの応答に対応する弾性定数C44が最も大きい.これは四極子-歪み相互作用の結合定数の大小によって決まっており,AFQ 秩序の秩序変数の対称性と常磁性相におけるソフト化の大きさの間に相関は無い.


図13 CeB6の弾性定数C44の低温部拡大図 [18]



図14 DyB2C2の弾性定数の温度変化 [39]


一方,強四極子(FQ)秩序を示す物質の場合は,秩序変数とそれに対応する弾性定数に現れるソフト化の大小に相関がある.図14にHoB6の弾性定数の温度依存性を示す.この物質はTQ = 6.1 KでΓ5型の四極子Oyz, Ozx, Oxyが<111>方向に整列するFQ秩序を示す.対応する弾性定数C44は協力的ヤーン・テラー効果による三方晶への構造変化に伴い,TQに向かって弾性定数が発散していることがわかる.これは強磁性転移において自発磁化が生じ容易軸方向の磁化率が発散することと類推できる.図15にCe3Pd20Ge6 の弾性定数の温度変化を示す.この物質はTQ = 1.3 Kで正方晶もしくは斜方晶への構造相転移が起こっていることが熱膨張と中性子回折実験で確認されている [29,30].弾性定数(C11-C12)/2$に50%を超えるソフト化が観測されることからΓ3対称性の四極子O20あるいはO22がFQ秩序していることを強く示唆する.


図15 HoB6の弾性定数C11, CL, (C11-C12)/2, C44の温度変化 [18]



図16 Ce$_3$Pd$_{20}$Ge$_6$の弾性定数$C_{11}$, $C_{¥rm L}$, $C_{¥rm B}$, $(C_{11}-C_{12})/2$, $C_{44}$の温度変化[57]


さて,四極子以上のランクの多極子と直接結合する共役場のプローブは今のところ見つかっていない.そのため,磁気八極子秩序や電気十六極子秩序が起こっていると考えられている物質に対しては,磁場や歪み場によって誘起される下位の電気四極子や磁気双極子を観測することで傍証を集めるしかない.現在,八極子秩序が実験的に立証されている系で超音波の報告があるのはCexLa1-xB6だけである.CeB6をLaで希釈していくと磁気相互作用と四極子相互作用が拮抗し,x = 0.75でAFQ転移温度とAFM転移温度が逆転した温度領域にOyz, Ozx, Oxyの強四極子モーメントが発生する非磁性のIV相と呼ばれる新たな相が現れる [31,32].超音波測定によって弾性定数C44は強四極子相関により31%の巨大なソフト化を示すことがわかり [33],赤津らによる熱膨張実験によって結晶がバルクで三方晶に歪んでいることが明らかとなった [34].これらの実験事実はIV相で強四極子モーメントが発達していることを強く示唆する.後に,この強四極子モーメントは久保・倉本によってΓ5u型の反強八極子秩序で二次的に誘起され得ることが理論的に示された [35,36].その後,共鳴X線散乱実験や磁場中中性子散乱実験が行われ,それぞれ反強八極子モーメントの誘起する電気四極子と磁気双極子の超格子反射が観測され,微視的に反強八極子秩序が実証された[37,38].


図17 Ce0.25La0.75B6の弾性定数C11, CB, (C11-C12)/2, C44の温度依存性 [31,33]


(第3章3.6節に続く)


Topics: 超音波からみた多極子・ラットリング
3. 歪みと弾性定数,四極子感受率
3-1 歪みと弾性エネルギー

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第3章  歪みと弾性定数,四極子感受率


物理的に意味があるのは音速ではなく,単位体積当たりに蓄えられる弾性エネルギーを表す「弾性定数」である.実験からは音速とC = ρ v2の関係で弾性定数(SI系では[J m-3],CGS単位系では[erg cm-3]の次元)が得られる.物質の密度ρが一定であると仮定した時,弾性定数の絶対値は音速の絶対値によって決まり,ヤーン・テラーエネルギーや四極子相互作用の結合定数を見積もる際に重要になる.一方,弾性定数の単位を圧力の単位[Pa]や[dyn/cm2]で表す場合もある.こちらは圧力効果を論じる場合や圧縮率(バルクモジュラス)との比較を行う際に有効かもしれない .

本章ではまず局在性が強い(混成効果が弱い)f 電子系について四極子感受率の定式化を行う.結論を先に言ってしまうと,それは量子力学の二次摂動を用いた,電気双極子と誘電率,あるいは磁気双極子と帯磁率の関係式と全く同じである.超音波が作る歪み場と結合するのは電気四極子であるから,波動函数に適用する演算子のランクが双極子から1つだけ上がり,物理量がベクトルからテンソルに変わる以外は何ら特別なことは無い.だから一度でも感受率の計算をやったことのある方は読み飛ばしてもらって構わない.


3.1 歪みと弾性エネルギー


物質は外場に対して何らかの応答を示す.例えば,磁場H に対して磁束密度B,電場E に対して電束密度D,応力Tに対して歪みS が発現する.それらの関係を表1に示す.

Table 1 物理テンソル・特性テンソル・外場のトライアドと,応答する多極子


一般に固体物理学で結晶が物理テンソル I の場の下にある場合,それによる観測量eと結晶の性質に由来する(結晶の異方性によって簡略化された)特性テンソルdの間には以下の関係がある.

e_i=d_{ij}I_j
(1)

ここで,添え字i, j (=1,2,3)は座標成分を表し,添え字の数は階数(ランク)と呼ぶ.
1階ランクのテンソル(即ちベクトル)同士を結びつける物理量dijは2階ランクのテンソルであり,マトリクス型式で表される.

¥pmatrix{e_1¥cr e_2¥cr e_3¥cr}=¥pmatrix{d_{11}&d_{12}&d_{13}¥cr d_{21}&d_{22}&d_{23}¥cr d_{31}&d_{32}&d_{33}¥cr}¥pmatrix{I_1¥cr I_2¥cr I_3¥cr}
(2)
さて,超音波による音速測定から得られる物理量は表1の弾性(スティフネス)定数である.これは物質の応力に対する歪みにくさ,即ち「かたさ」に対応する量で,歪みSも応力Tも2階ランクの極性テンソルであるから,これらを繋ぐ特性テンソルの弾性定数は4階ランクの極性テンソルである.

T_{ij}=C_{ijkl}S_{kl}
(3)
応力Tijはi面に働くj方向の力をあらわす.本稿では今後,誘電率は登場しないので,普段私たちが論文で用いている表記に変更し,歪みをεkl,応力をσijと再定義すると
¥sigma_{ij}=C_{ijkl}¥epsilon_{kl}
(4)
テンソル量Cijklは対称で,その要素は添字の順番に依らないから,以下のようなVoigtの表記で書き換えることができる.
11 → 1,  22 → 2, 33 → 3, 23,(32) → 4, 31(13) → 5, 12(21) → 6.

マトリクス形式で式(4)を表してみよう.

¥pmatrix{¥sigma_1¥cr ¥sigma_2¥cr ¥sigma_3¥cr¥sigma_4¥cr ¥sigma_5¥cr ¥sigma_6¥cr}=¥pmatrix{C_{11}&C_{12}&C_{13}&C_{14}&C_{15}&C_{16}¥cr  &C_{22}&C_{23}&C_{24}&C_{25}&C_{26}¥cr  & &C_{33}&C_{34}&C_{35}&C_{36}¥cr  & & &C_{44}&C_{45}&C_{46}¥cr  & & & &C_{55}&C_{56}¥cr  & & & & &C_{66}¥cr}¥pmatrix{¥epsilon_1¥cr ¥epsilon_2¥cr ¥epsilon_3¥cr¥epsilon_4¥cr ¥epsilon_5¥cr ¥epsilon_6¥cr}
(5)
ここで,空白部分は対称要素Cij=Cjiであるため省略した.さらに,物体に働く応力は釣り合っており,回転モーメントは無いとすると,応力も歪みも対称となり,もともと34 = 81個あった4階テンソルの要素の数が21個に簡約化される.さらに結晶がある対称操作に対して不変であるとすると,特性テンソルは簡約化される.独立な弾性定数の要素は結晶の対称性に応じて減り,最も対称性の高い立方対称では独立な弾性定数はC11, C12, C44のたった3個になる.ここでは群論の詳細については割愛するが,三斜晶から立方晶までの結晶対称性において対称操作によって残る独立な弾性定数と,その基底函数をまとめたものを表2に示す.


Table 2. 様々な結晶系における独立な弾性定数 [6]



Table 3. 立方晶系における超音波の伝搬・変位方向と弾性定数の関係


下では簡単のため,結晶構造が立方晶の場合について考える.一般に,歪みは次のような対称テンソルで定義される.

¥epsilon_{ij}=¥biggl( ¥frac{¥partial u_j}{¥partial i}+ ¥frac{¥partial u_i}{¥partial j}¥biggr)=¥epsilon_{ji}
(6)
ここでuiは変位ベクトルであり,歪みは無次元量であることがわかる.上式で定義された歪みは,x, y, zの二次多項式と同じ変換をする(i,j=1,2,3 → x,y,zと置き直すと解り易い)から,点群Oの既約表現と同じ変換をする対称歪みεΓを求めることができる.表3に立方晶系における超音波の伝搬・変位方向と,誘起される歪み,観測される弾性定数の関係を示した.立方晶系の弾性エネルギーはフックの法則により,弾性定数と対称化された歪みを用いて以下のように書ける.
E_{elas.}&=&¥frac{1}{2}¥sum_{ijkl}C_{ijkl}¥epsilon_{ij}¥epsilon_{kl}¥nonumber¥¥
  E_{elas.}^{cubic}&=&¥frac{1}{2}C_{11}(¥epsilon_{xx}^2+¥epsilon_{yy}^2+¥epsilon_{zz}^2)+C_{12}(¥epsilon_{yy}¥epsilon_{xx}+¥epsilon_{xx}¥epsilon_{zz}+¥epsilon_{zz}¥epsilon_{yy})+2C_{44}(¥epsilon_{yz}^2+¥epsilon_{zx}^2+¥epsilon_{xy}^2)¥nonumber¥¥
  &=&¥frac{1}{2}C_B¥epsilon_{B}^2+¥frac{C_{11}-C_{12}}{2}(¥epsilon_u^2+¥epsilon_v^2)+2C_{44}(¥epsilon_{yz}^2+¥epsilon_{zx}^2+¥epsilon_{xy}^2)
(7)

ここでCB = (C11+2C12)/3はバルクモジュラス で結晶対称性を保持するΓ1 対称性の体積歪みεB = εxxyyzzに対応し図4に示すような単極子・電気十六極子と結合する.(C11-C12)/2, C44はそれぞれΓ3, Γ5対称性の対称歪みに対する四極子の応答に対応する.磁場中の横波超音波には歪みに加えて,格子の回転が弾性エネルギーに寄与する.そのため超音波の伝搬方向と磁場方向の関係に依っては,弾性エネルギーに差が生じる.本稿では割愛する.

(第3章3.2節に続く)


Topics: 超音波からみた多極子・ラットリング
4. 緩和の現象論

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第4章 緩和の現象論


ここまで駆け足で,$f$電子化合物の弾性応答の典型例について紹介してきたが,これまでの議論に於いては,超音波による歪みは電子系に対する「静的な」摂動として取り扱った.超音波の周波数$¥omega$はたかだか数百MHz程度であるから,一般に電子系の緩和時間$¥tau$よりも充分長い($¥omega ¥tau ¥ll 1$).この場合,パルスエコー法の実験で得られる「音速」とは,図21に示すフォノンの分散関係における音響フォノンモードの$k = 0$の傾き,即ちフォノンの「群速度」

 v_{¥rm g}=¥frac{¥partial ¥omega}{¥partial k}¥bigg|_{k ¥to 0}
(28)

に該当する.
一方,相転移近傍における臨界現象や価数揺動,ラットリングに伴う局所電荷ゆらぎ等に起因し,電子系の緩和時間が超音波の周波数に近づく場合($¥omega ¥tau ¥sim 1$)は, 電子-フォノン相互作用を通して音速(と超音波吸収)にも緩和現象が現れる.ここで位相速度を

 v_{¥rm p}(¥omega)=¥frac{¥omega (k)}{k}
(29)

と定義すると,音速に分散がある場合,群速度と位相速度が一致しなくなることを意味する.これを「分散領域」と呼ぼう.以下の議論では分散領域($v_{¥rm g} ¥neq v_{¥rm p}$)において周波数$¥omega$に依存する位相速度$v_{¥rm p}$を考える.また,$C = ¥rho v^2$の関係式で結ばれる弾性定数(弾性率)も周波数に依存する動的弾性定数(弾性率)$C(¥omega)$として定義できる .それは複素弾性率の実数成分として現象論的に理解できる.以下にはその一般式を示す.


図21 左はカゴ状物質における低エネルギー領域のフォノン分散関係の模式図.右は群速度$v_{¥rm g}$と位相速度$v_{¥rm p}$の概略図(ここでは$k ¥sim 0$近傍の曲率の変化を誇張して描いている).



4.1 複素弾性率


熱平衡状態に外部から磁場$H$, 電場$E$, 歪み$¥epsilon$, 温度$T$などをかけて平衡状態からずらすとき,再び熱平衡状態に近づいていく過程を緩和現象という.平衡状態と瞬間力が「静的」な内部状態であるのに対して,緩和現象ではさらに系の「動的」な性質を記述する必要がある. 例えば熱力学では状態方程式等を与えて系の性質を規定しなければならないように,動的な現象論では緩和(応答)函数をまず与えてから系の状態を規定していかなくてはならない.

たとえばある秩序変数$¥eta$を仮定し,それが歪みや応力といったマクロな物理量の影響を受ける場合を考える~¥cite{45}.非平衡状態で$¥eta$は時間と共に変化し,平衡値$¥eta_0$に近づいてゆく.この緩和過程を表す最も簡単な場合は

 ¥frac{d ¥eta}{dt}=-¥frac{¥eta - ¥eta_0}{¥tau}
(30)

と記述できる.$¥tau$は典型的な緩和時間である.平衡値$¥eta_0$も同様に歪みの影響を受ける.上式は$t = 0$で$¥eta = ¥eta'$であったとすると,

¥eta - ¥eta_0=(¥eta' - ¥eta_0)¥exp(-¥frac{t}{¥tau})
(31)

のように指数函数的に系の緩和が起こる事を表している.緩和函数(または応答函数)が時間と共に指数函数的に減衰する例は自然界にしばしば観られ,特に誘電体の誘電緩和現象で起きるデバイ型緩和現象は,磁化の緩和を観る交流磁化率や局所電荷ゆらぎの緩和を観る超音波分散の解析に類推して用いられる.

さて,系に音波が伝搬することにより歪みが弾性波の角周波数$¥omega$で周期的に断熱変化すると仮定する.

¥epsilon ¥propto ¥exp(-i ¥omega t)
(32)

すると,秩序変数の平衡値$¥eta_0$も弾性波の影響を受けるが,$¥eta$もまたある位相差を伴って変化するはずである.
その結果,式(30)は

¥frac{d ¥eta}{dt}=-i ¥omega ¥eta = -¥frac{¥eta - ¥eta_0}{¥tau}
(33)

と書け,

¥eta =¥frac{¥eta_0}{1-i ¥omega ¥tau}
(34)

となる.
弾性率は一般的な感受率(応答/外場)として理解すると(応力/歪み)$= ¥partial¥sigma / ¥partial¥epsilon$で与えられる~¥cite{46}.

¥chi^{¥ast} = ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{¥eta}+¥bigg(¥frac{¥partial¥sigma}{¥partial¥eta}¥bigg)_{¥epsilon} ¥frac{¥partial¥eta}{¥partial¥epsilon}
(35)

ここで第1項は静的弾性率,第2項は動的弾性率である.
式(33)を代入すると

¥chi^{¥ast} = ¥frac{1}{1-i ¥omega ¥tau} ¥bigg¥{ ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{¥eta}+¥bigg(¥frac{¥partial¥sigma}{¥partial¥eta}¥bigg)_{¥epsilon}  ¥frac{¥partial¥eta_0}{¥partial¥epsilon} -i¥omega ¥tau ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{¥eta} ¥bigg¥}
(36)

ここで,
$(¥partial¥sigma/¥partial¥epsilon)_{¥eta}+(¥partial¥sigma/¥partial¥eta)_{¥epsilon}(¥partial¥eta/¥partial¥epsilon)$
は充分に遅い緩和に対する応力の歪み微分であるから,歪みの変化が充分に遅い緩和過程($¥omega ¥tau ¥ll 1$)で平衡状態が壊れないとすると$¥eta$は常に平衡値$¥eta_0$をとるため,単純に$(¥partial¥sigma/¥partial¥epsilon)_{eq.}$と書ける.ここで

¥chi (¥omega ¥to 0) = ¥chi_0 = ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{eq.}
(37)

を低周波極限(即ち静的弾性率)と定義する.
一方,歪みの変化が非常に速い場合($¥omega ¥tau ¥gg 1$)では$¥eta$は系の変化に追いつけずに一定$¥eta_{¥infty}$に保たれる.その中間の周波数つまり$¥omega ¥tau ¥sim 1$の近傍では$¥eta$の変化は歪みのそれよりも位相が遅れ,応力の変化として観測される.ここで

¥chi (¥omega ¥to ¥infty) = ¥chi_{¥infty} = ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{¥eta}
(38)

を高周波極限と定義する.
式(37) と(38)を用いると,(36)は

¥chi^{¥ast} = ¥frac{1}{1-i ¥omega ¥tau} ¥bigg¥{ ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{eq.} - i¥omega ¥tau ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{¥eta} ¥bigg¥} =  ¥frac{1}{1-i ¥omega ¥tau} (¥chi_0 - i¥omega ¥tau ¥chi_{¥infty})
(39)

と書ける.

先述の通り,$¥chi$は弾性率に限らず,一般的に交流磁化率や誘電緩和などの緩和現象を解析する感受率と類推できる.現実を描写するため,弾性率を実部と虚部に分ける.複素弾性率$¥chi^{¥ast}$と複素音速度$v^{¥ast}$の関係式

¥chi^{¥ast} = ¥rho v^{¥ast 2}
(40)

と,複素音速度と吸収係数αの関係式

¥frac{1}{v^{¥ast}} = ¥frac{1}{v}-i¥frac{¥alpha}{¥omega}
(41)

より,実際の超音波測定では複素弾性率$¥chi^{¥ast}=¥chi_{¥rm Re.}+i ¥chi_{¥rm Im.}$の実部は動的弾性定数$C(¥omega)$,虚部は超音波吸収係数$¥alpha(¥omega)$として観測される.

¥chi_{¥rm Re.} = C(¥omega) = C_{¥infty}+¥frac{C_0-C_{¥infty}}{1+¥omega^2 ¥tau^2}, ¥chi_{¥rm Im.} = ¥alpha(¥omega) = ¥alpha_{¥infty}+¥frac{C_0-C_{¥infty}}{2 ¥rho v^3_{¥infty}} ¥frac{¥omega^2 ¥tau}{1+¥omega^2 ¥tau^2}
(42,43)

図22は充填スクッテルダイトLaOs$_4$Sb$_{12}$の超音波分散の研究で得られた活性エネルギーと緩和時間を用いて計算された動的弾性率(左軸)と超音波吸収係数(右軸)である.図22の下に示すのはアレニウス型の緩和時間の温度依存性である.超音波の測定周波数$¥omega$(左軸から延ばした直線)と系(ラットリング)の緩和時間$¥tau$がマッチングする領域(共鳴条件$¥omega ¥tau ¥sim 1$)で,実部の弾性率は低周波極限$C_0$から高周波極限$C_{¥infty}$へ増大し,虚部の超音波吸収は極大を示す.これが次章で示すラットリングに伴う超音波分散の現象論的な解釈である.


図22 LaOs$_4$Sb$_{12}$の超音波分散の現象論的な解釈.



4.2 音響フォノンと音速の関係(位相速度と群速度についての蛇足)


先述した通り,パルスエコー法で得られる音速とは,非分散領域(音速に分散が無い領域)においては,超音波パルスの波束の間隔 [s]と伝搬経路長[m]から求められる速度を意味し,これはフォノンの群速度$v_{¥rm g}$に該当する.一般に音速という場合はこれを指すことが多い.一方,位相比較法で得られる「音速」とは,一定の位相をもった波面が伝搬する速度のことを指し,これはフォノンの位相速度$v_{¥rm p}$に該当する.先述の通り,実際の測定では一定位相を持つ連続波をパルス化して入射しており,入射波束が持つ位相と基準信号の位相差を検出し,位相差を一定(即ち波数$k$を一定)に保つように周波数$¥omega$に負帰還をかけ,位相速度の相対変化$¥Delta v_{¥rm p}(¥omega)/v_{¥rm p}(¥omega)$を周波数の相対変化$¥Delta ¥omega/¥omega$として読み替えている.分散領域では群速度と位相速度が一致しない($v_{¥rm g} ¥neq v_{¥rm p}$)が,非分散領域では一致する($v_{¥rm g} = v_{¥rm p}$)ため,位相比較法は両者を測定していることになる.

ここで慧眼なる読者は気づかれたかもしれないが,結晶にモノクロマティックな(単一周波数を持った)超音波を入射する場合,分散領域ではある周波数$¥omega$に対応するフォノンの位相速度が変化し,超音波が伝搬しなくなることが懸念される.例えば図22にあるように,緩和時間がアレニウス型の温度依存性を示す時,厳密にモノクロマティックな超音波を用いた実験を行った場合,群速度と位相速度が異なるので,パルスエコー間隔を追った実験では緩和に伴い位相速度が変化し,パルス波の大部分が吸収されるため,音速の低周波極限から高周波極限への変化は不連続なデータとして観測されるはずである.しかし,実際は超音波トランスデューサの特性上,ある帯域幅を持った波群が入射されているため,我々が実験で作り出せる超音波は完全なモノクロ波ではない.よって,分散領域でも音速の相対変化をある程度連続的に追う事ができる.位相比較法では分散領域において位相速度が変化しても,周波数分布の裾の周波数帯の波が伝搬し続けるので,位相信号を見失う事無く追跡し,負帰還によって変調される周波数の相対変化から位相速度の相対変化を観測することができる.


(第5章1節に続く)


5-3 1-4-12系 充填スクッテルダイト化合物

Sep 29, 2011

第5章 超音波からみたラットリング


5.3 1-4-12系 充填スクッテルダイト化合物



図29 充填スクッテルダイト$R$Os$_4$Sb$_{12}$の結晶構造.


3-20-6クラスレート系で超音波分散と低温ソフト化が観測された当時,充填スクッテルダイトの特定領域研究のプロジェクトが走っていたこともあり,希土類がカゴ状に囲まれているという点で共通点を持つ充填スクッテルダイトPrOs$_4$Sb$_{12}$,LaOs$_4$Sb$_{12}$の超音波測定が行なわれた.そして蓋を開けてみればこちらでも磁場に鈍感な超音波分散と,低温ソフト化が観測された.$Ln$Os$_4$Sb$_{12}$($Ln$ = 希土類)では超音波分散とソフト化が$(C_{11}-C_{12})/2$モードに検出され,$C_{44}$モードでは検出されないため,$Ln$$_3$Pd$_{20}$Ge$_6$系とは対照的であり,これは超音波分散の起源が$Ln$$_3$Pd$_{20}$Ge$_6$系とは異なる $¥Gamma_3$対称性のオフセンターモードを有する事を強く示唆する.


図30 $Ln$Os$_4$Sb$_{12}$ ($Ln$ = La, Ce, Pr, Nd)の弾性定数$C_{11}$, $C_{44}$の温度依存性[72].



図31 $Ln$$_3$Pd$_{20}$Ge$_6$ ($Ln$ = La, Ce, Pr, Nd)の弾性定数$C_{11}$, $C_{44}$の温度依存性[72].


それらのカゴの幾何学的配置とオフセンターモードの模式図を表5の中に描いた.La$_3$Pd$_{20}$Ge$_6$系では内包イオンから観て,$¥langle 111 ¥rangle$方向に原子の密度が小さくなり,$¥langle 100 ¥rangle$方向にはGe原子が居る.一方, $Ln$Os$_4$Sb$_{12}$系では逆に$¥langle 100 ¥rangle$方向に原子の密度が小さくなり,$¥langle 111 ¥rangle$方向にOs原子が居る.これらの原子を避けるようにゲストイオンが振動していると仮定すると,それらの物質で予想されるオフセンターモードの量子基底状態の対称性とも符合する.

先述(3.3章)の図8で紹介したPrOs$_4$Sb$_{12}$の弾性定数$(C_{11}-C_{12})/2$の3 Kから超伝導転移までの間の温度領域における結晶場解析からの「ずれ」は, La$_3$Pd$_{20}$Ge$_6$, LaOs$_4$Sb$_{12}$で観測される「低温ソフト化」がPrOs$_4$Sb$_{12}$においても顕在化していると考えると説明できる.但し,超伝導転移温度以下で実験結果では「低温ソフト化」が停止しているように見えることから,PrOs$_4$Sb$_{12}$の非BCS型超伝導状態では局所電荷分布の$¥Gamma_{23}$対称性が破れている可能性が指摘されている.これまでのところ中性子散乱実験でPr原子核密度の空間分布が調べられているが,常磁性相の8 Kにおいては0.1 ${¥rm ¥AA}$の測定精度内でPrの核はオンセンター(すなわちカゴの中心)に分布していると報告されている[63].


表5 オフセンターモードの電荷分布と対称性,結合する歪み,弾性定数の関係


(*表5の見方: 中央のカゴは充填スクッテルダイト(20面体)と3-20-6系クラスレートの$4a$サイト(32面体)を描いたもので,ゲストイオンの電荷分布を円グラフで示している.例えば中央に描かれた電荷分布$¥rho_{[100] ¥Gamma_3^+,u}$は$¥pm z$ 軸方向に存在確率1/2づつ量子力学的に電荷が分布する状態である.ゲストイオンのサイトシンメトリーによって既約分解されたこれらの局所(オフセンター)電荷分布は,下段に描かれた電気四極子と同様に歪みに応答する.)


(第5章4節に続く)

VLTLab Home Page Syndicate this site (XML)

Contents  

Archives  

Today's Quotes

Kaleidoscope

<a href='https://phys.sci.hokudai.ac.jp/LABS/kyokutei/vlt/yanagisawa//Kaleidoscope/SOS_JPSJ2016-01.htm'>解説記事を読む...</a> ▶Read this article...

Fundings

Eco-inventry

path: