Ultrasonic Team (T. Yanagisawa, Hokkaido Univ,)    


Topics: 超音波からみた多極子・ラットリング
1. はじめに

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。物性研究における超音波実験の役割を簡単にレビューします。


第1章 はじめに


わたしたちは物性を調べるとき,物質に様々な外場をかけ,それに対する物質の持つ様々な自由度の応答を観測する.例えば磁性を調べる場合,最も簡単な方法は物質に磁場を加え,物質中のスピン自由度の応答をその周りに巻いたコイル等で観測する方法である.それでは,わたしたちが扱う強相関電子系に於いて「超音波測定」とはどのような外場を加え,何の応答を観測できるのだろうか?その質問に大雑把に答えるとしたら

「超音波測定は物質中に歪み場を加え,電気四極子の応答を観測する手法である.」

と言えるだろう.

超音波は弾性波として固体中を伝搬する.局所的にその弾性波をみると,結晶中に然るべき対称性を持った歪み場が作り出されている.電子系はその歪み場を,ポテンシャルの変化として感じる.もし固体が完全結晶(※1) で周期的な格子を持つ場合,そのポテンシャルは結晶対称性によって周期函数で表される.超音波には縦波と横波が存在するため,様々な対称性の歪み場を加えることができる.超音波計測とは,いわば系のポテンシャルを外から直接揺さぶり,電子系(ならびに格子系)の応答を四極子感受率(あるいは歪み感受率)として観測する手法であり,磁気モーメントの応答に対応する帯磁率,エントロピーに対応する比熱とともに物性物理学における有効な測定手段の一つである.

そのため,超音波を用いて得られる「弾性定数」という基本的物理量は固体物理学の教科書には必ずと言っていいほど登場する.しかしながら,「磁性」や「誘電性」を観測する実験手法に比べ,超音波実験とそこから得られる物理には,正直なところ馴染みが少ないという学生諸君が多いのではなかろうか.確かにキッテル先生のIntroduction to Solid State Physicsでは一時期,弾性定数の章が割愛されていたし(※2),物性物理学の門を叩いた学生は自分の測定した比熱や磁化を手っ取り早く計算したいので,固体物理の教科書の「弾性」の章は読み飛ばしている可能性が高い.

そこで,本稿では学生の皆さんに「超音波で固体の電子状態を観る」ことにもっと馴染んでもらうべく,超音波で得られる物理量の持つ意味と,それを重い電子系や多極子秩序,ラットリング等を示す系に適用したときに得られるデータの解釈の仕方について,実験屋の視点から基礎的な解説をし,最後に最近著者が行っている充填スクッテルダイト化合物のラットリングの研究について,超音波実験から得られた知見を紹介する.

本稿が学会や論文で超音波の実験結果をみる際の手助けになれば幸いである.

(第二章に続く)

注釈
※1  人類が手にすることができる最も「完全」に近い結晶はシリコンの単結晶である.しかし最近,極低温弾性定数測定によって1モル当り1014個程度の単原子空孔の存在が明らかになった. [1]
※2 7th Edition以降で復活


Topics: 超音波からみた多極子・ラットリング
2. 超音波実験の測定手法

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第2章 超音波実験の測定手法


2.1 パルス法


先ず,超音波実験の測定手法と測定の勘所を至極簡単に述べよう.超音波測定では,固体中を伝搬する弾性波の音速と吸収を測定する.パルス法と呼ばれる方法は固体の音速を測定する最もポピュラーな方法である.良く研磨された測定試料面に各種の接着剤によりトランスデューサを接着し,トランスデューサの共振周波数に合った連続波発信器を用意する.そこから出力された電気信号をゲートに通して充分に短い幅(200-500 [ns])に切り,ドライブ・パルスとしてトランスデューサに入力する.トランスデューサによってパルス信号は超音波パルスに変換され,試料中を弾性波(歪み波)として伝搬する.試料の両端面で反射を繰り返した超音波パルスはトランスデューサにより再度電気信号に変換され,検出器へ送られる.オシロスコープでその信号の時間変化を監視すると,図1のような「超音波パルスエコー」が得られる.「エコー」とは山びこ現象で次々に聞こえる「こだま」そのものである.理想的なパルスエコーならばその振幅は exp(-βt)に比例して減衰する.t [s]は入射信号からの遅延時間である.

超音波が伝搬する経路長を,試料端で反射したエコーが届く時間間隔で割れば,超音波の音速$v$の絶対値が得られる.βは単位長さ当たりの超音波吸収係数α [dB m-1]、音速v [m s-1]との間にβ = α/vの関係を持つ.ここで,ドライブ・パルスはほぼ矩形のエンベロープを持っているが,電気音響変換の過程で歪みを生じたり、トランスデューサを試料に貼付ける為の接着剤による影響でエンベロープのエッジが丸みを帯びてくる。特に電気機械結合定数の高いLiNbO3を圧電素子として用いた場合,エコー信号の立ち上がりを正確に知ることが難しくなるため,正確な絶対値の測定には直接試料表面に圧電結晶をスパッタリングする方法や圧電高分子トランスデューサをスピンコート法で塗布するなどの工夫が必要である.いずれにしても音速の絶対値の測定精度には限界があり,うまく測定しても数%の誤差が生じてしまう.


Fig. 01 超音波エコーの観測例:URu2Si2の横波弾性定数C44モードの超音波エコーのスナップ写真.
(厚さ100 μmのLiNbO3ウエーハをトランスデューサに用い,3倍高調波の105 MHzで観測した.)



Fig. 02 位相比較法で扱う信号のタイムチャート(概念図)



Fig. 03 超音波位相比較法のブロックダイアグラム


 

2.2 位相比較法


量子系の状態を反映したより微小な音速の変化を検出するためには,エコー信号を検出するのではなく,位相信号を用いることで高い分解能を達成することができる.これは位相比較法と呼ばれる手法である.位相比較法については様々なところで解説があるので[2,3] ,その詳細については省くが,ここでの勘所は音速の変化を基準信号からの遅延(位相差)として観測し(図2),位相差をゼロ検出し,先程の発信器に負帰還をかけることで,音速の相対変化を信号発生器の周波数の相対変化に読み替えるところにある.即ち,原理的には測定周波数が高ければ高いほど,分解能が向上することになる.また,ゼロ検出法を用いることで,測定系における非線形性の影響を受けにくく,Δ v/v 〜 10-7のきわめて高い分解能の測定が可能となる.この高い分解能は,特にSi単結晶内に存在する単原子空孔の量子状態の測定[4]や,音響ドハース効果などの極微小な量子振動の検出に有効である.我々が用いている測定系のブロックダイアグラムを図3に示す.これとは別に周波数を固定して生の位相差信号をデジタルストレージに保存し,そこから音速の相対変化と吸収係数を同時に算出する方法もある[5].この方法は若干分解能で劣るものの,積分器による負帰還を行わないため,音速の変化が著しい場合やパルス磁場下など短い時定数で測定を行う必要がある場合に有効である.

(第3章に続く)


3-5 多極子秩序における弾性異常

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第3章 超音波実験の測定手法

 

3.5 多極子秩序における弾性異常


まずは歪みと線形結合する電気四極子が秩序を起こす典型物質の弾性応答を紹介しよう.反強四極子(AFQ)秩序を起こす物質の典型例といえば先ほど紹介したCeB6である[24].この物質はTQ = 3.3 KでΓ5型の四極子が秩序波数 k = [1/2 1/2 1/2]で整列するAFQ秩序を起こし,さらにTN = 2.3 K以下で反強磁性(AFM)秩序を示すことが中性子散乱実験,NMR,共鳴X線散乱実験で確認されている.図13にCeB6の弾性定数C44の低温部拡大図を示す.Γ8四重項結晶場基底状態はAFQ秩序の四極子-歪み相互作用によって2つのクラマース二重項に分裂する.そのためTQでC44のソフト化は止まり,低温でゆるやかに上昇する.TQ以上の常磁性相では1/Tに比例したキュリー項があるため,Γ8四重項が反強四極子秩序によって2つのクラマース2重項に分裂することで,四極子感受率-χΓ5が逆カスプ状に折れ曲がった結果としてこの弾性異常が理解できる.これは反強磁性磁化率において副格子磁化に平行に磁場を加えたときの磁化率χ||に現れるカスプ状の応答を垂直方向にひっくり返したものと類推することができる.

同じような振る舞いは正方晶DyB2C2の弾性応答にも観られる.DyB2C2は正方晶系で初めて反強四極子秩序が報告された物質である[25].TQ = 24.7 KでOxy型のAFQ秩序を示し,TNN = 15.3 KでAFM秩序を示すことが共鳴X線散乱実験や磁場下における中性子散乱実験で検証された [26, 27].Dy3+はJ = 15/2のクラマースイオンでありDyのサイトシンメトリーC4hの下で4E1/2(+)4E3/2と8つのクラマース二重項に既約分解される.比熱で見積もられた磁気エントロピーがTQでRln4に達することから,結晶場基底状態は2組のクラマース二重項が擬縮退した擬四重項基底状態になっていると考えられる.これらを踏まえて弾性定数を観ると,全ての弾性定数にソフト化が現れていることから [28],選択則より基底状態は対称性の異なる二つのクラマース二重項の組み合わせに限定される.さらにTQにおいて秩序変数Oxyの応答を観る弾性定数C66にはCeB6で弾性定数C44に観られたような)逆カスプ状の折れ曲がりが観測される.常磁性相におけるソフト化の変化量を比較すると四極子Oyz, Ozxの応答に対応する弾性定数C44が最も大きい.これは四極子-歪み相互作用の結合定数の大小によって決まっており,AFQ 秩序の秩序変数の対称性と常磁性相におけるソフト化の大きさの間に相関は無い.


図13 CeB6の弾性定数C44の低温部拡大図 [18]



図14 DyB2C2の弾性定数の温度変化 [39]


一方,強四極子(FQ)秩序を示す物質の場合は,秩序変数とそれに対応する弾性定数に現れるソフト化の大小に相関がある.図14にHoB6の弾性定数の温度依存性を示す.この物質はTQ = 6.1 KでΓ5型の四極子Oyz, Ozx, Oxyが<111>方向に整列するFQ秩序を示す.対応する弾性定数C44は協力的ヤーン・テラー効果による三方晶への構造変化に伴い,TQに向かって弾性定数が発散していることがわかる.これは強磁性転移において自発磁化が生じ容易軸方向の磁化率が発散することと類推できる.図15にCe3Pd20Ge6 の弾性定数の温度変化を示す.この物質はTQ = 1.3 Kで正方晶もしくは斜方晶への構造相転移が起こっていることが熱膨張と中性子回折実験で確認されている [29,30].弾性定数(C11-C12)/2$に50%を超えるソフト化が観測されることからΓ3対称性の四極子O20あるいはO22がFQ秩序していることを強く示唆する.


図15 HoB6の弾性定数C11, CL, (C11-C12)/2, C44の温度変化 [18]



図16 Ce$_3$Pd$_{20}$Ge$_6$の弾性定数$C_{11}$, $C_{¥rm L}$, $C_{¥rm B}$, $(C_{11}-C_{12})/2$, $C_{44}$の温度変化[57]


さて,四極子以上のランクの多極子と直接結合する共役場のプローブは今のところ見つかっていない.そのため,磁気八極子秩序や電気十六極子秩序が起こっていると考えられている物質に対しては,磁場や歪み場によって誘起される下位の電気四極子や磁気双極子を観測することで傍証を集めるしかない.現在,八極子秩序が実験的に立証されている系で超音波の報告があるのはCexLa1-xB6だけである.CeB6をLaで希釈していくと磁気相互作用と四極子相互作用が拮抗し,x = 0.75でAFQ転移温度とAFM転移温度が逆転した温度領域にOyz, Ozx, Oxyの強四極子モーメントが発生する非磁性のIV相と呼ばれる新たな相が現れる [31,32].超音波測定によって弾性定数C44は強四極子相関により31%の巨大なソフト化を示すことがわかり [33],赤津らによる熱膨張実験によって結晶がバルクで三方晶に歪んでいることが明らかとなった [34].これらの実験事実はIV相で強四極子モーメントが発達していることを強く示唆する.後に,この強四極子モーメントは久保・倉本によってΓ5u型の反強八極子秩序で二次的に誘起され得ることが理論的に示された [35,36].その後,共鳴X線散乱実験や磁場中中性子散乱実験が行われ,それぞれ反強八極子モーメントの誘起する電気四極子と磁気双極子の超格子反射が観測され,微視的に反強八極子秩序が実証された[37,38].


図17 Ce0.25La0.75B6の弾性定数C11, CB, (C11-C12)/2, C44の温度依存性 [31,33]


(第3章3.6節に続く)


3-6 重い電子系に対する超音波実験

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第3章 超音波実験の測定手法

 

3.6 重い電子系に対する超音波実験


続いて,$f$電子の遍歴性が強く,混成効果が効いている重い電子系に対する超音波実験について述べる.CeCu$_6$やCeRu$_2$Si$_2$等のスピン自由度に由来する近藤効果が効いている系では,一般的に多体効果の影響は全対称表現$¥Gamma_1$に対応するバルクモジュラスに現れ,対称性を低下させる横波弾性定数には現れない.一方,Coxらが提唱する非クラマース$¥Gamma_3$二重項に対する近藤効果である四極子近藤効果などのマルチチャンネル近藤効果ではその異方性を反映して横波弾性定数に$-¥log T$の温度依存性が現れるなどの理論予測がある[40].後者のマルチチャンネル近藤効果の実験的検証はまだ中途の段階にあるので,ここでは従来型の磁気近藤効果由来の重い電子系に於ける縦波弾性定数の温度依存性の典型例を示そう.

先ずはL$¥ddot{¥rm u}$thi先生の超音波電子物性の教科書から一枚の絵を抜粋する.これは重い電子系の縦波超音波の典型を表した模式図である.3つの領域に分けて説明しよう.


図18 典型的な重い電子系の縦波弾性定数の温度依存性


(1) $T > ¥Theta_D$の高温領域とバックグラウンド

電子-格子相互作用の影響が無い場合,弾性定数は降温と共にほぼ線形に上昇する.もし,調和近似を基にフォノン間の相互作用を考えなければ,弾性定数は温度に依存せず一定となり,熱膨張は存在しない.しかし,一般的に弾性定数は昇温と共に減少し(軟化し),固体は膨張する .それは調和近似の破綻を意味する.現実の系では非調和項の影響から$T > ¥Theta_D$の温度領域で弾性定数のバックグラウンドは$-T$に比例した温度依存性を示す.$T = 0$でそのバックグラウンドは$-T^4$に比例して低温で一定値に収束する.(図の点線)これはデュロン・プティ則により格子比熱が$T^3$に比例(即ち,内部エネルギーが$T^4$に比例)することに対応している.$-T^4$の温度依存性が成り立つ温度領域を決めるのは一般的に難しく,その温度依存性は現象論的に

C_{ij}=C_{ij}^0-¥frac{s}{¥exp(t/T)-1}
(25)

と表す事ができる[41].($s, t$は任意の定数)

(2) $T ¥sim ¥Delta$の結晶場効果

結晶場レベルの分裂幅$¥Delta$に対応した温度領域で,四極子感受率に起因するソフト化が生じる.例えば立方晶O$_{¥rm h}$群に於いて縦波弾性定数$C_{11}$は,バルクモジュラス$C_{¥rm B}$と$¥Gamma_3$対称性の$(C_{11}-C_{12})/2$モードの線形結合の形で$C_{11}$=$C_{¥rm B}$+4/3$(C_{11}-C_{12})/2$と表されるので,$¥Gamma_1$対称性の電気十六極子$(O_4^0+5O_4^4)$と,$¥Gamma_3$対称性の四極子$O_2^2$の感受率があらわれる.

(3) $T < T^¥ast$の強い電子-格子(グリューナイゼンパラメータ)結合¥¥

重い電子系では,$T < T^¥ast$において音響フォノンによる準粒子の散乱が無視できなくなる. ($T^¥ast$は多体効果の特性温度で磁気近藤効果の場合$T^¥ast ¥sim T_{¥rm K}$と考えてよい.)それが起源となった強い電子-格子相互作用によりポテンシャル変形が生じ,体積変化に対応する縦波モード(即ち$¥Gamma_1$対称性の歪み$¥epsilon_Β = ¥epsilon_x+¥epsilon_y+¥epsilon_z$に対応するバルクモジュラス$C_B$を含むモード)において弾性異常が現れる.この効果は一般的に対称性を低下させる歪みに対応する横波モードには現れない.この音響フォノンと準粒子の結合はグリューナイゼン定数によって現象論的によく説明できることが知られている.グリューナイゼン定数は熱力学的関係式$(¥frac{dT}{d¥epsilon})_S = (¥frac{¥partial T}{¥partial S})_{¥epsilon}(¥frac{¥partial S}{¥partial ¥epsilon})_T$から以下のように定義される($S$はエントロピー)

 ¥Omega = ¥alpha_{¥rm T} ¥frac{C_{¥rm B}}{C_{¥rm V}}=-¥bigg( ¥frac{¥partial ¥ln T}{¥partial ¥epsilon_{¥rm V}} ¥bigg)_S
(26)

ここで,$α_{¥rm T}$は等温過程における熱膨張係数,$C_{¥rm B}$はバルクモジュラスで等温圧縮率$¥kappa$の逆数として定義される. $C_{¥rm V}$は定積比熱である.図19と図20にそれぞれCeCu$_6$とCeRu$_2$Si$_2$の弾性定数の温度依存性を示す[42,43].CeCu$_6$は220 Kに斜方晶から単斜晶への構造変化に伴うソフト化が横波$C_{66}$モードに観られる[43].より低温領域では明瞭な結晶場効果が縦波$C_{11}$, $C_{22}$, $C_{33}$と横波$C_{44}$に現れ,低温で収束するが,$T < 5$ Kで近藤一重項の形成が始まるにつれ,$C_{11}$は低温でさらにもう一段階ソフト化を示す[44].CeRu$_2$Si$_2$は対称性を低下させる横波モードに明瞭な結晶場効果は観られず,体積歪みに関連した縦波モード$C_{11}$, $C_{33}$に特に顕著なソフト化が観られる.このような体積歪みに関係した縦波モードのみに現れる弾性異常は$4f$電子が遍歴し準粒子バンドを形成していると考えられているCeSn$_2$, CeNi, CeNiSnなどにも共通して観られる.


図19 CeCu$_6$の弾性定数の温度変化 [43]



図20 CeRu$_2$Si$_2$の弾性定数の温度依存性 [42]


結合定数$¥Omega$が正で大きな値を持つ場合,近藤一重項が形成されると共に体積収縮が起こることが熱膨張測定などで確かめられている.これをKondo Volume Collapseという.$T = 0$におけるその体積変化の大きさは多体効果の特性温度$T^¥ast$(近藤温度のオーダー)を用いて

¥epsilon_{¥rm V}^0 = -n k_{¥rm B} T^¥ast ¥frac{¥Omega}{C_{¥rm B}}
(27)

と見積もることができる.ここで$n$は単位体積あたりの磁性イオンの数であり,$n ¥sim 10^{28} [m^{-3}]$程度であるとする.重い電子系において実験的に求められたグリューナイゼン定数の典型的な値は$¥Omega ¥sim 100$程度,多体効果の特性温度を$T^¥ast ¥sim 10$ [K], ボルツマン定数$k_{¥rm B} = 1.38 ¥times 10^{-23} $[J K$^{-1}$], バルクモジュラスを$C_{¥rm B} ¥sim 10^{11}$ [J m$^{-3}$]とおくと,体積歪みの大きさは$¥epsilon_{¥rm V} ¥sim 10^{-3}$となり,研究室レベルのX線装置でも検出できるような,かなり大きな変化であることがわかる.実際にCeRu$_{2}$Si$_{2}$で格子定数の変化が観測されており,$T ¥to 0$の外挿値は$¥epsilon_V ¥sim 1.4 ¥times 10^{-3}$程度と見積もられ[45],上式で良く再現される.
一方,URu$_2$Si$_2$やUPt$_3$などアクチノイド系の重い電子系では上記のグリューナイゼン定数による弾性応答が成り立たない例も報告されている[42,46,47].これらの系では超音波の周波数が電子散乱時間に近づき,超音波の伝搬において断熱近似が成り立たなくなっていることが推測され,エネルギー散逸を考慮した等温弾性率を用いた特別なアプローチが必要である.


(第4章に続く)


3-3 立方晶系に於けるCe3+, Sm3+(J = 5/2), Pr3+, U4+(J = 4)の四極子感受率

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第3章 歪みと弾性定数,四極子感受率

 

3.3 立方晶系に於けるCe3+ , Sm3+ (J = 5/2), Pr3+ , U4+(J =4) の四極子感受率


上記の四極子感受率をJ = 5/2とJ = 4の場合について計算した結果を示し,四極子自由度を有する典型的な希土類化合物の弾性定数と比較してみよう.

(1) J = 5/2

f電子軌道が安定で局在している場合(混成や価数揺動等が無く,結晶場基底状態がLS多重項で記述できる場合)を考える.先ず半整数の角運動量Jを持つ系を考える.Ce3+やSm3+は半整数の角運動量J = 5/2をJ多重項の基底状態に持ち,立方晶系の結晶場ではΓ7二重項とΓ8四重項に分裂する.その波動函数と固有値は次の様に書ける.

¥big|¥Gamma_7;  ¥pm¥big>=¥frac{1}{¥sqrt{6}}¥big|¥pm¥frac{5}{2}¥big>-¥sqrt{¥frac{5}{{6}}}¥big|¥mp¥frac{3}{2}¥big>,¥hspace{10mm}E_7=<¥Gamma _7|H_{¥rm CEF}|¥Gamma _7>=-240B^0_4,¥nonumber ¥¥
¥big|¥Gamma_8;  a¥pm¥big>=¥sqrt{¥frac{5}{{6}}}¥big|¥mp¥frac{5}{2}¥big> -¥frac{1}{¥sqrt{6}}¥big|¥pm¥frac{3}{2}¥big>,¥hspace{53mm}¥nonumber ¥¥ 
¥big|¥Gamma_8; b¥pm¥big>=¥big|¥pm¥frac{1}{2}¥big>,¥hspace{10mm}E_8=<¥Gamma _8|H_{¥rm CEF}|¥Gamma _8>=+120B^0_4.
(23)


ここで|J = 5/2, J_z> = |J_z>とした.Γ7はクラマース二重項であり,磁場によって分裂するが,歪み場では分裂しない.他方,Γ8四重項は2つのクラマース2重項が縮退しており,磁気双極子のみならず,電気四極子・磁気八極子も合わせて4 x 4 = 16の自由度を持つ.(表4)


表4 O群の積表



よって,Γ8基底状態を持つCe, Sm化合物では四極子または八極子が秩序変数となり得るため,極めて興味深い多極子の物理が期待できる.超音波物理の観点からは基底状態がΓ7かΓ8であるかに従って,相異なる弾性定数の温度変化を示すことが期待されるため,分光学的に結晶場基底状態を決定できる.例として図5にJ = 5/2におけるΓ7基底状態の場合とΓ8基底状態の場合の四極子感受率を示す.それぞれ縦軸と横軸は結晶場分裂幅Δ [K]で規格化してある.ここでxはLea-Leask-Wolfの結晶場ハミルトニアンにおける変数xに対応する[7].Γ3対称性の歪みに対応する四極子感受率-χΓ3は四極子O22の応答であり,横波弾性定数 (C11-C12)/2に対応する.Γ5対称性歪みに対応する四極子感受率-χΓ5は四極子Oyz, Ozx, Oxyの応答であり横波弾性定数C44に対応する.Γ7基底の場合,低温でヴァン・ヴレック項が支配的となり弾性定数は一定値に収束する.一方,Γ8基底の場合は低温でキュリー項が支配的となり,1/Tに比例するソフト化が現れる.


Fig. 5 (a) J = 5/2に対する立方晶系点群Ohの結晶場レベルスキーム (W = 1とおいた).
結晶場A, Bを仮定した場合の;
(b) 四極子感受率-χΓ3の温度依存性,
(c) 四極子感受率-χΓ5の温度依存性
(縦・横軸共に第一励起状態の結晶場分裂幅Δでスケールした.)



Fig. 6 (a) J = 4に対する立方晶系点群Oh (Th :破線 )の結晶場レベルスキーム (W = 1とおいた) [16,17].
Oh群における結晶場A-Dを仮定した場合の;
(b) 四極子感受率-χΓ3の温度依存性,
(c) 四極子感受率-χΓ5の温度依存性
(縦・横軸共に第一励起状態の結晶場分裂幅Δでスケールした.)


(2) J = 4
次に,全角運動量Jが整数の場合を考えよう,J = 4の波動函数と固有値は以下の様に書ける.
|¥Gamma_1 ¥rangle=¥sqrt{¥frac{7}{12}}|0 ¥rangle+¥sqrt{¥frac{5}{24}}(|+4 ¥rangle-|-4 ¥rangle),¥hspace{15mm}¥langle ¥Gamma _1|H_{¥rm CEF}|¥Gamma _1 ¥rangle=28(B^0_4-60B_6^0),¥hspace{3mm}¥nonumber ¥¥
|¥Gamma_3^{(1)} ¥rangle =¥sqrt{¥frac{1}{2}}(|+2 ¥rangle-|-2 ¥rangle),¥hspace{67mm}¥nonumber ¥¥ 
|¥Gamma_3^{(2)} ¥rangle =¥sqrt{¥frac{5}{12}}|0 ¥rangle-¥sqrt{¥frac{7}{24}}(|+4 ¥rangle-|-4 ¥rangle) ,¥hspace{14mm}¥langle ¥Gamma _3|H_{¥rm CEF}|¥Gamma _3  ¥rangle=4(B^0_4+336B_6^0),¥hspace{3mm}¥nonumber¥¥
|¥Gamma _4^{(0)} ¥rangle =¥sqrt{¥frac{1}{2}}(|+4 ¥rangle-|-4 ¥rangle),¥hspace{67mm}¥nonumber ¥¥
|¥Gamma _4^{(¥pm)} ¥rangle =¥sqrt{¥frac{1}{8}}|¥pm3 ¥rangle+¥sqrt{¥frac{7}{8}}|¥mp1 ¥rangle),¥hspace{14mm}¥langle ¥Gamma _4|H_{¥rm CEF}|¥Gamma _4  ¥rangle=14(B^0_4+6B_6^0),¥hspace{3mm}¥nonumber ¥¥
|¥Gamma _5^{(0)} ¥rangle =¥sqrt{¥frac{1}{2}}(|+2 ¥rangle-|-2 ¥rangle),¥hspace{65mm}¥nonumber ¥¥
|¥Gamma _5^{(¥pm)} ¥rangle =¥sqrt{¥frac{7}{8}}|¥pm3 ¥rangle-¥sqrt{¥frac{1}{8}}|¥mp1 ¥rangle),¥hspace{12mm}¥langle ¥Gamma _5|H_{¥rm CEF}|¥Gamma _5  ¥rangle=2(13B^0_4+210B_6^0).¥nonumber ¥¥
(24)

整数の角運動量を持つ希土類化合物も興味深い弾性的性質を示す.立方晶系においてΓ3二重項の波動函数は,Γ3対称性の電気四極子O20,O22の行列要素に対角成分を持つため,Γ3対称性の四極子感受率に低温で1/Tに比例した結晶場によるソフト化が期待される.一方,磁気測定(帯磁率,中性子散乱)からは選択則(磁気双極子モーメントJx, Jy, Jzは立方晶系においてΓ4uに属することを踏まえて表4のO群の積表を参照してみよう.)よりΓ3二重項の応答が得られないため,超音波測定がΓ3非クラマース系の研究において欠かせない道具となっている.超音波で観測される弾性定数(C11-C12)/2に対応する四極子感受率-χΓ3はΓ3状態のキュリー項を敏感に検出できる.これまでPrPb3, PrMg3, PrPtBi, PrInAg2, PrIr2Zn20などがΓ3基底を持つ化合物として注目されている.そこでは四極子の不整合構造や四極子近藤効果,さらにΓ3二重項が持つ磁気八極子Txyzの効果など,様々な物理の議論が展開されている.

図6(b), (c)にJ = 4について様々な基底状態(Th群の影響はΓ4とΓ5にのみ現れる.ここでは竹ヶ原らによる結晶場ハミルトニアン[16]の6次項(O62-O66)に付く変数yとして,PrOs4Sb12の結晶場解析で用いられた値y = 0.105を用いた.)を仮定した場合の四極子感受率の計算結果を示す.基底状態と第一励起状態の結晶場分裂幅Δで温度軸と縦軸を規格化してある.基底状態がΓ3の場合-χΓ3は低温でキュリー項によるソフト化が現れ,-χΓ5は低温で一定値に収束するヴァン・ヴレック項が支配的となるため選択則によるコントラストが現れる.

さて,典型物質の弾性定数と比較してみよう.図7にCeB6の弾性定数を示す[18].CeB6は立方晶で,Ce3+イオン(J = 5/2)の結晶場基底状態はΓ8(0 K)-Γ7(540 K)であることがわかっている.弾性定数はΓ8四重項を反映して(C11-C12)/2, C44共に低温でキュリー項による1/Tに比例したソフト化が観測される.超音波実験によって決定されたC44の四極子間相互作用係数はg'Γ5= -2.2 Kと負の値をとり,Oyz, Ozx, Oxy型の反強四極子秩序を示唆する.

一方,J = 4の系で超音波が最もその威力を発揮するのは先述のΓ3基底を持つ系であるが,本稿ではあえてPrOs4Sb12を挙げよう.この物質においてPrイオンのサイトシンメトリーはT h で,Γ14(2)が約8 Kで擬縮退した擬四重項基底状態を持つことが解っている.実はこの物質が注目された当初は比熱,磁化の解析から基底状態はΓ23(OhにおけるΓ3)二重項であると考えられていた[19].図8と図9に弾性定数(C11-C12)/2とC44の温度変化と,2つの結晶場モデルによる計算結果をそれぞれ示す.図8の内挿図を見ると,Γ1基底を基にした四極子感受率の計算結果は3 Kで極小値をとってハード化するため,TC = 1.85 Kまで弾性定数の減少が続く実験結果を再現できていない.このように零磁場の四極子感受率の解析では一見Γ23基底の方が良く合っているように見える.しかし,それが誤りであることは弾性定数の磁場変化を測定すると明らかになる.図10に弾性定数(C11-C12)/2の磁場変化(H || <110>)と,基底状態のゼーマン分裂を考慮した四極子感受率の磁場変化をそれぞれの結晶場基底モデルについて示す[20,22].するとそこでも結晶場モデルによって四極子感受率に明らかな差異が認められ,Γ1基底のモデルが良く合うことがわかる.PrOs4Sb12は磁場誘起の四極子秩序を示すが,H || <110>において8 T付近で生じる準位交差がその起源となることからもΓ14(2)の擬四重項基底状態であることが裏付けられる.それでは,なぜ実験結果は低温領域で四極子感受率に基づく計算から「ずれ」るのだろうか.その理由はPrイオンのオフセンター自由度を考えることによって説明される[21].(詳細は5.3章で述べる.)


FIg. 7 CeB6の弾性定数C11, CB, (C11-C12)/2, C44の温度変化



Fig. 8 PrOs4Sb12の弾性定数(C11-C12)/2の温度変化
(30 Kの弾性異常はラットリングに伴う超音波分散である.実線はΓ1基底状態,破線はΓ23基底状態を仮定した場合の四極子感受率による解析)[58]



Fig. 9 PrOs4Sb12の弾性定数C44の温度変化(実線はΓ1基底状態,破線はΓ23基底状態を仮定した場合の四極子感受率による解析)[58]



Fig. 10
(a) PrOs4Sb12の弾性定数(C11-C12)/2の磁場変化 (H || <110>).
(b) 結晶場基底状態にΓ14(2)擬四重項を仮定した場合の四極子感受率-χΓ23の磁場変化 (-χΓ3と同義).
(c) 結晶場基底状態にΓ234(2)擬五重項を仮定した場合の四極子感受率-χΓ5の磁場変化.(それぞれ内挿図は結晶場レベルスキームの磁場変化)[22]



(第3章3.4節に続く)

VLTLab Home Page Syndicate this site (XML)

Contents  

Archives  

Today's Quotes

Kaleidoscope

<a href='https://phys.sci.hokudai.ac.jp/LABS/kyokutei/vlt/yanagisawa//Kaleidoscope/Chargedistribution_Symmetry.htm'>解説記事を読む...</a> ▶Read this article...

Fundings

Eco-inventry

path: