Topics: 超音波からみた多極子・ラットリング
1. はじめに
第1章 はじめに
わたしたちは物性を調べるとき,物質に様々な外場をかけ,それに対する物質の持つ様々な自由度の応答を観測する.例えば磁性を調べる場合,最も簡単な方法は物質に磁場を加え,物質中のスピン自由度の応答をその周りに巻いたコイル等で観測する方法である.それでは,わたしたちが扱う強相関電子系に於いて「超音波測定」とはどのような外場を加え,何の応答を観測できるのだろうか?その質問に大雑把に答えるとしたら
「超音波測定は物質中に歪み場を加え,電気四極子の応答を観測する手法である.」
と言えるだろう.
超音波は弾性波として固体中を伝搬する.局所的にその弾性波をみると,結晶中に然るべき対称性を持った歪み場が作り出されている.電子系はその歪み場を,ポテンシャルの変化として感じる.もし固体が完全結晶(※1) で周期的な格子を持つ場合,そのポテンシャルは結晶対称性によって周期函数で表される.超音波には縦波と横波が存在するため,様々な対称性の歪み場を加えることができる.超音波計測とは,いわば系のポテンシャルを外から直接揺さぶり,電子系(ならびに格子系)の応答を四極子感受率(あるいは歪み感受率)として観測する手法であり,磁気モーメントの応答に対応する帯磁率,エントロピーに対応する比熱とともに物性物理学における有効な測定手段の一つである.
そのため,超音波を用いて得られる「弾性定数」という基本的物理量は固体物理学の教科書には必ずと言っていいほど登場する.しかしながら,「磁性」や「誘電性」を観測する実験手法に比べ,超音波実験とそこから得られる物理には,正直なところ馴染みが少ないという学生諸君が多いのではなかろうか.確かにキッテル先生のIntroduction to Solid State Physicsでは一時期,弾性定数の章が割愛されていたし(※2),物性物理学の門を叩いた学生は自分の測定した比熱や磁化を手っ取り早く計算したいので,固体物理の教科書の「弾性」の章は読み飛ばしている可能性が高い.
そこで,本稿では学生の皆さんに「超音波で固体の電子状態を観る」ことにもっと馴染んでもらうべく,超音波で得られる物理量の持つ意味と,それを重い電子系や多極子秩序,ラットリング等を示す系に適用したときに得られるデータの解釈の仕方について,実験屋の視点から基礎的な解説をし,最後に最近著者が行っている充填スクッテルダイト化合物のラットリングの研究について,超音波実験から得られた知見を紹介する.
本稿が学会や論文で超音波の実験結果をみる際の手助けになれば幸いである.
(第二章に続く)
注釈
※1 人類が手にすることができる最も「完全」に近い結晶はシリコンの単結晶である.しかし最近,極低温弾性定数測定によって1モル当り1014個程度の単原子空孔の存在が明らかになった. [1]
※2 7th Edition以降で復活