Ultrasonic Team (T. Yanagisawa, Hokkaido Univ,)    


3-2 四極子感受率

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第3章  歪みと弾性定数,四極子感受率

 

3.2 四極子感受率


弾性定数の結晶場効果による温度変化は一般的に四極子感受率として理解できる.四極子感受率は歪み場を摂動として系に加えた場合の四極子モーメントの応答である.これは外部磁場に対する磁気モーメントの応答としての帯磁率と単純に類推できる.以下でその一般式を導く.

結晶中に入射された超音波は結晶格子をわずかに歪ませる.電子状態が四極子を持っている場合,四極子-歪み相互作用を媒介に歪みは結晶場ポテンシャルVCEFに変調を与えて電子系と結合する.そのエネルギー変化は極めて小さな摂動として取り扱うことができる.

V_{¥rm CEF}=V_{¥rm CEF}^0+¥sum_{¥Gamma ¥gamma}¥frac{¥partial V_{¥rm CEF}}{¥partial ¥epsilon_{¥Gamma ¥gamma}}¥epsilon_{¥Gamma ¥gamma}
(8)

VCEF0は無摂動状態の結晶場ポテンシャル,Γγは点群の既約表現の基底を表し,εΓγは対称歪みである.四極子-歪み相互作用のハミルトニアンHQSはVCEFを歪みの1次まで展開し,第2項の展開係数をウィグナー・エッカートの定理より等価演算子で置き換えると次のように書ける,

H_{¥rm QS}=-¥sum_i¥sum_{¥Gamma ¥gamma}g_¥Gamma O_{¥Gamma ¥gamma}^{(i)}¥epsilon_{¥Gamma ¥gamma}
(9)

gΓは四極子-歪み相互作用の結合定数,OΓγは局在f電子の電気四極子の電荷分布を表す等価演算子で四極子演算子と呼ばれる.電気四極子の大きさは量子軌道の異方的な空間的広がり面積と電荷の積に比例する.希土類イオンのf軌道は角運動量で量子化されているので,四極子の大きさは演算子

Q_{¥Gamma ¥gamma}=Ze ¥langle r^2 ¥rangle ¥alpha_J O_{¥Gamma ¥gamma}
(10)

を用いて計算できる.ここにZeは希土類イオンの有効電荷,<r2>は希土類イオンでのf軌道の動径方向の自乗平均,αJはスティーブンス因子である.以下,四極子演算子OΓを単純に「四極子」と呼ぶことにする.


Fig. 4 対称歪みと結合する多極子



さて,点群の各既約表現に対応する四極子は角運動量Jx, Jy, Jzの線形結合で書き表され,等価演算子法を用いて以下のように記述できる.

¥Gamma_1:¥{O_B=J_x^2+J_y^2+J_z^2¥}¥¥
¥Gamma_3:¥Biggl¥{O_2^0=¥frac{2J_z^2-J_x^2-J_y^2}{¥sqrt{3}},O_2^2=J_x^2-J_y^2¥Biggr¥}¥¥
¥Gamma_5:¥{O_{yz}=J_yJ_z+J_zJ_y,O_{zx}=J_zJ_x+J_xJ_z,O_{xy}=J_xJ_y+J_yJ_x¥}¥¥
(11)

さらに,四極子同士にも伝導電子やフォノンを媒介としてRKKY的な相互作用が働いているものとし,これを四極子間相互作用のハミルトニアンをHQQとして次のように表すことができる.

H_{¥rm QQ}=-¥sum_i¥sum_{¥Gamma ¥gamma}g_¥Gamma^¥prime ¥langle O_{¥Gamma ¥gamma} ¥rangle O_{¥Gamma ¥gamma}^{(i)}
(12)

ここでgΓ'は四極子のサイト間相互作用定数であり,< OΓγ>は或るサイトi に注目したとき他の全てのサイトの四極子を期待値で置き換える分子場近似を表す.

4f 電子系で立方晶の場合,摂動を受けた結晶場に対する摂動ハミルトニアンは次の様に書ける.

H_{¥rm CEF}=H_{¥rm CEF}^0+H_{¥rm QS}+H_{¥rm QQ}
(13)

後の説明のため、結晶場ハミルトニアンは、Lea-Leask-Wolfの良く知られた表式[7]を用いておく。

H_{¥rm CEF}=B_4^0(O_4^0+5O_4^4)+B_6^0(O_6^0-21_6^4)¥¥
=W¥biggl(x¥frac{O_4}{F_4}+(1-|x|)¥frac{O_6}{F_6}¥biggr)
(14)

ここで,Wはスケール因子,x (|x|≦1)は4次と6次の項の係数比で,F4とF6は全角運動量Jによって決まる.Onmはスティーブンスの等価演算子で,これは結晶場ポテンシャルを球面調和函数で多重極展開すると得られる.全角運動量Jの結合式としての以下のようなテンソル演算子で記述できる.

O_4^0&=&35J_z^4-30J(J+1)J_z^2+25J_z^2-6J(J+1)+3J^2(J+1)^2¥¥
O_4^4&=&¥frac{(J_+^4+J_-^4)}{2}¥¥
O_6^0&=&231J_z^6-¥{315J(J+1)+735¥}J_z^4+¥{105J^2(J+1)^2-525J(J+1)+294¥}¥¥
&{}&-5J^3(J+1)^3+40J^2(J+1)^2-60J(J+1)¥
O_6^4&=&¥frac{(11J_z^2-J(J+1)-38)(J_+^4+J_-^4)}{4}+¥frac{(J_+^4+J_-^4)(11J_z^2-J(J+1)-38)}{4}¥¥
(15)

一方,四極子間相互作用が無視できない場合はεΓγの代わりに有効歪み$εΓγeffを考えると都合が良い.

H_{¥rm QS}+H_{¥rm QQ}=-¥sum_i¥sum_{¥Gamma ¥gamma}g_{¥Gamma}^{(i)} O_{¥Gamma ¥gamma}^{(i)} ¥biggl(¥epsilon_{¥Gamma ¥gamma}+¥frac{g_¥Gamma^¥prime}{g_¥Gamma}¥langle O_{¥Gamma ¥gamma} ¥rangle ¥biggr)=-¥sum_i¥sum_{¥Gamma ¥gamma}K_{¥Gamma}^{(i)} O_{¥Gamma ¥gamma}^{(i)} ¥epsilon_{¥Gamma ¥gamma}^{eff}
(16)

KΓは相互作用を繰り込んだ場合の結合定数である,1イオンに対する電子系の摂動のエネルギーは歪みの二次まで計算し,

E_i=E_i^0-K_{¥Gamma} ¥epsilon_{¥Gamma ¥gamma}^{eff}¥langle i|O_{¥Gamma ¥gamma}|i¥rangle+K_¥Gamma^2(¥epsilon_{¥Gamma ¥gamma}^{eff})^2¥sum_{i¥ne j}¥frac{|¥langle i|O_{¥Gamma ¥gamma}|j¥rangle |^2}{E_i^0-E_j^0}
(17)

と表すことができる.Ei0は四極子-歪み相互作用が存在しない場合の結晶場状態 $|i ¥rangle$のエネルギーである.
次に,弾性定数の表式を得るために自由エネルギーについて考える.系の全自由エネルギーは,

F=E_{elas.}-Nk_BT¥ln Z
(18)

と表される.右辺一項目は結晶の弾性エネルギー,二項目はf 電子系全体のエネルギーである.Nは単位体積あたりのf 電子の総数を表し,Zは状態和である.弾性定数は自由エネルギーを歪みεΓγで二階微分し,εΓγ→0の極限をとることで求められる.

C_¥Gamma=¥frac{¥partial^2F}{¥partial¥epsilon_{¥Gamma ¥gamma}^2}¥bigg|_{¥epsilon_{¥Gamma ¥gamma} ¥rightarrow0}
(19)

CΓ0は四極子-歪み相互作用が働かないときの弾性定数を表しており,主に格子(音響フォノンの非調和性)からの寄与によるバックグラウンドとなる. χΓは四極子感受率(歪み感受率)とよばれ,

g_¥Gamma^2¥chi_¥Gamma(T)=¥bigg¥langle ¥frac{¥partial^2E_i}{¥partial¥epsilon_{¥Gamma ¥gamma} ^2}¥bigg¥rangle -¥frac{1}{k_BT}¥bigg¥{¥bigg¥langle ¥bigg(¥frac{¥partial E_i}{¥partial ¥epsilon_{¥Gamma ¥gamma}}¥bigg)^2¥bigg¥rangle -¥bigg¥langle¥frac{¥partial E_i}{¥partial ¥epsilon_{¥Gamma ¥gamma} }¥bigg¥rangle^2¥bigg¥}
(20)

で与えられる.ブラケットはボルツマンの熱平均を意味する.第一項はヴァンブレック項であり,四極子OΓγの行列要素の非対角要素からの寄与を表す.この項は低温で温度に依らず一定となる.第二項はキュリー項であり,OΓγの対角要素からの寄与を表す.四極子演算子にあまり馴染みが無い方も,上記の表式には見覚えがあるだろう.これは量子力学の二次摂動を用いた磁化$M$と,磁気感受率としての帯磁率χMの関係と全く同じである.四極子モーメントの熱平均は次のように書ける.

¥langle O_{¥Gamma ¥gamma}¥rangle=¥frac{1}{Z}¥sum_i¥langle i|O_{¥Gamma ¥gamma}|i¥rangle¥exp¥bigg(-¥frac{E_i}{k_BT}¥bigg)
(21)

いま,系が常磁性相における平衡状態で,四極子モーメント間に相互作用は働いておらず,摂動ハミルトニアンとしてHQSだけが効くと考えた場合,四極子感受率は,

¥chi_{¥Gamma}(T) = -¥frac{1}{g_{¥Gamma}}¥frac{¥partial ¥langle O_{¥Gamma ¥gamma} ¥rangle}{¥partial ¥epsilon_{¥Gamma ¥gamma}}
(22)

となる.従って,四極子感受率とは単位歪み当たりに誘起される電気四極子を意味し,これは一様な磁場中で磁気双極子モーメントの平均値として定義される磁化の関係に対応していることがわかる.
基底状態が四極子に対して縮退している場合(即ち,基底状態の波動函数を四極子演算子に適用したとき,その行列要素が対角成分を持つ場合)低温で温度の逆数(1/T)に比例する「弾性定数の減少(軟化)」が現れる.以後,結晶場によるf 電子の四極子自由度に起因する弾性定数の軟化を表す用語として「ソフト化」と定義しよう.

(第3章3.3節に続く)


3-5 多極子秩序における弾性異常

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第3章 超音波実験の測定手法

 

3.5 多極子秩序における弾性異常


まずは歪みと線形結合する電気四極子が秩序を起こす典型物質の弾性応答を紹介しよう.反強四極子(AFQ)秩序を起こす物質の典型例といえば先ほど紹介したCeB6である[24].この物質はTQ = 3.3 KでΓ5型の四極子が秩序波数 k = [1/2 1/2 1/2]で整列するAFQ秩序を起こし,さらにTN = 2.3 K以下で反強磁性(AFM)秩序を示すことが中性子散乱実験,NMR,共鳴X線散乱実験で確認されている.図13にCeB6の弾性定数C44の低温部拡大図を示す.Γ8四重項結晶場基底状態はAFQ秩序の四極子-歪み相互作用によって2つのクラマース二重項に分裂する.そのためTQでC44のソフト化は止まり,低温でゆるやかに上昇する.TQ以上の常磁性相では1/Tに比例したキュリー項があるため,Γ8四重項が反強四極子秩序によって2つのクラマース2重項に分裂することで,四極子感受率-χΓ5が逆カスプ状に折れ曲がった結果としてこの弾性異常が理解できる.これは反強磁性磁化率において副格子磁化に平行に磁場を加えたときの磁化率χ||に現れるカスプ状の応答を垂直方向にひっくり返したものと類推することができる.

同じような振る舞いは正方晶DyB2C2の弾性応答にも観られる.DyB2C2は正方晶系で初めて反強四極子秩序が報告された物質である[25].TQ = 24.7 KでOxy型のAFQ秩序を示し,TNN = 15.3 KでAFM秩序を示すことが共鳴X線散乱実験や磁場下における中性子散乱実験で検証された [26, 27].Dy3+はJ = 15/2のクラマースイオンでありDyのサイトシンメトリーC4hの下で4E1/2(+)4E3/2と8つのクラマース二重項に既約分解される.比熱で見積もられた磁気エントロピーがTQでRln4に達することから,結晶場基底状態は2組のクラマース二重項が擬縮退した擬四重項基底状態になっていると考えられる.これらを踏まえて弾性定数を観ると,全ての弾性定数にソフト化が現れていることから [28],選択則より基底状態は対称性の異なる二つのクラマース二重項の組み合わせに限定される.さらにTQにおいて秩序変数Oxyの応答を観る弾性定数C66にはCeB6で弾性定数C44に観られたような)逆カスプ状の折れ曲がりが観測される.常磁性相におけるソフト化の変化量を比較すると四極子Oyz, Ozxの応答に対応する弾性定数C44が最も大きい.これは四極子-歪み相互作用の結合定数の大小によって決まっており,AFQ 秩序の秩序変数の対称性と常磁性相におけるソフト化の大きさの間に相関は無い.


図13 CeB6の弾性定数C44の低温部拡大図 [18]



図14 DyB2C2の弾性定数の温度変化 [39]


一方,強四極子(FQ)秩序を示す物質の場合は,秩序変数とそれに対応する弾性定数に現れるソフト化の大小に相関がある.図14にHoB6の弾性定数の温度依存性を示す.この物質はTQ = 6.1 KでΓ5型の四極子Oyz, Ozx, Oxyが<111>方向に整列するFQ秩序を示す.対応する弾性定数C44は協力的ヤーン・テラー効果による三方晶への構造変化に伴い,TQに向かって弾性定数が発散していることがわかる.これは強磁性転移において自発磁化が生じ容易軸方向の磁化率が発散することと類推できる.図15にCe3Pd20Ge6 の弾性定数の温度変化を示す.この物質はTQ = 1.3 Kで正方晶もしくは斜方晶への構造相転移が起こっていることが熱膨張と中性子回折実験で確認されている [29,30].弾性定数(C11-C12)/2$に50%を超えるソフト化が観測されることからΓ3対称性の四極子O20あるいはO22がFQ秩序していることを強く示唆する.


図15 HoB6の弾性定数C11, CL, (C11-C12)/2, C44の温度変化 [18]



図16 Ce$_3$Pd$_{20}$Ge$_6$の弾性定数$C_{11}$, $C_{¥rm L}$, $C_{¥rm B}$, $(C_{11}-C_{12})/2$, $C_{44}$の温度変化[57]


さて,四極子以上のランクの多極子と直接結合する共役場のプローブは今のところ見つかっていない.そのため,磁気八極子秩序や電気十六極子秩序が起こっていると考えられている物質に対しては,磁場や歪み場によって誘起される下位の電気四極子や磁気双極子を観測することで傍証を集めるしかない.現在,八極子秩序が実験的に立証されている系で超音波の報告があるのはCexLa1-xB6だけである.CeB6をLaで希釈していくと磁気相互作用と四極子相互作用が拮抗し,x = 0.75でAFQ転移温度とAFM転移温度が逆転した温度領域にOyz, Ozx, Oxyの強四極子モーメントが発生する非磁性のIV相と呼ばれる新たな相が現れる [31,32].超音波測定によって弾性定数C44は強四極子相関により31%の巨大なソフト化を示すことがわかり [33],赤津らによる熱膨張実験によって結晶がバルクで三方晶に歪んでいることが明らかとなった [34].これらの実験事実はIV相で強四極子モーメントが発達していることを強く示唆する.後に,この強四極子モーメントは久保・倉本によってΓ5u型の反強八極子秩序で二次的に誘起され得ることが理論的に示された [35,36].その後,共鳴X線散乱実験や磁場中中性子散乱実験が行われ,それぞれ反強八極子モーメントの誘起する電気四極子と磁気双極子の超格子反射が観測され,微視的に反強八極子秩序が実証された[37,38].


図17 Ce0.25La0.75B6の弾性定数C11, CB, (C11-C12)/2, C44の温度依存性 [31,33]


(第3章3.6節に続く)


3-4 近藤効果を取り入れた四極子感受率(横波超音波)の一例(CXcal-excel)

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第3章 超音波実験の測定手法

 

3.4 近藤効果を取り入れた四極子感受率(横波超音波)の一例(CXcal-excel)


結晶場と近藤効果の共存系における各種物理量の計算プログラム``CXcal-excel''が,酒井治先生によって配布されている[23].このプログラムは磁性不純物の結晶場を考慮したアンダーソン・ハミルトニアンから出発し,Non Crossing Approximation(NCA)と呼ばれる自己無撞着摂動論を用いて立方対称結晶場にあるCe3+ (J = 5/2)の1イオン感受率の温度依存の数値データとグラフを簡便に与えてくれる.

図11に結晶場レベルがΓ8(0 K)-Γ7(19 K)で,近藤温度TKを5 Kと10 Kに設定したときの四極子感受率-χΓ3と-χΓ5の温度依存性を示す.横軸は温度の対数で表している.実線は前節で計算したNCA計算を用いない1イオン感受率である.図12には結晶場レベルがΓ7(0 K)-Γ8(38 K)のときの同様の結果を示す.この後の解説のために申し添えると,結晶場分裂幅をこれらの値にした理由は,最終章で紹介するSmOs4Sb12の四極子応答を解釈するためである.Γ7基底モデルの結晶場分裂幅はΓ8基底モデルの丁度2倍の値に設定しているので,Γ8基底モデルの温度軸を2倍にスケールすれば同じ分裂幅の感受率を比較できる.結晶場分裂幅Δに対してTKが半分くらいになるとΓ8基底モデルではキュリー項によるソフト化が急激に抑えられ,逆にΓ7基底モデルでは高温領域でソフト化が増大する.例えばΓ5対称性の四極子感受率-χΓ5はTK = 5-10 K程度を仮定した場合. Γ7とΓ8基底状態のいずれかを定性的には区別できなくなっていることがわかる.(図11,12下図の破線を比較してみよう.).


図11 Γ8(0 K)-Γ7(19 K)の結晶場状態を持つCe3+ J = 5/2の4f 電子系に対する近藤効果を考慮した場合と考慮しない場合の四極子感受率の比較



図12 Γ7(0 K)-Γ8(38 K)の結晶場状態を持つCe3+ J = 5/2の4f 電子系に対する近藤効果を考慮した場合と考慮しない場合の四極子感受率の比較



(第3章3.5節に続く)


Topics: 超音波からみた多極子・ラットリング
4. 緩和の現象論

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第4章 緩和の現象論


ここまで駆け足で,$f$電子化合物の弾性応答の典型例について紹介してきたが,これまでの議論に於いては,超音波による歪みは電子系に対する「静的な」摂動として取り扱った.超音波の周波数$¥omega$はたかだか数百MHz程度であるから,一般に電子系の緩和時間$¥tau$よりも充分長い($¥omega ¥tau ¥ll 1$).この場合,パルスエコー法の実験で得られる「音速」とは,図21に示すフォノンの分散関係における音響フォノンモードの$k = 0$の傾き,即ちフォノンの「群速度」

 v_{¥rm g}=¥frac{¥partial ¥omega}{¥partial k}¥bigg|_{k ¥to 0}
(28)

に該当する.
一方,相転移近傍における臨界現象や価数揺動,ラットリングに伴う局所電荷ゆらぎ等に起因し,電子系の緩和時間が超音波の周波数に近づく場合($¥omega ¥tau ¥sim 1$)は, 電子-フォノン相互作用を通して音速(と超音波吸収)にも緩和現象が現れる.ここで位相速度を

 v_{¥rm p}(¥omega)=¥frac{¥omega (k)}{k}
(29)

と定義すると,音速に分散がある場合,群速度と位相速度が一致しなくなることを意味する.これを「分散領域」と呼ぼう.以下の議論では分散領域($v_{¥rm g} ¥neq v_{¥rm p}$)において周波数$¥omega$に依存する位相速度$v_{¥rm p}$を考える.また,$C = ¥rho v^2$の関係式で結ばれる弾性定数(弾性率)も周波数に依存する動的弾性定数(弾性率)$C(¥omega)$として定義できる .それは複素弾性率の実数成分として現象論的に理解できる.以下にはその一般式を示す.


図21 左はカゴ状物質における低エネルギー領域のフォノン分散関係の模式図.右は群速度$v_{¥rm g}$と位相速度$v_{¥rm p}$の概略図(ここでは$k ¥sim 0$近傍の曲率の変化を誇張して描いている).



4.1 複素弾性率


熱平衡状態に外部から磁場$H$, 電場$E$, 歪み$¥epsilon$, 温度$T$などをかけて平衡状態からずらすとき,再び熱平衡状態に近づいていく過程を緩和現象という.平衡状態と瞬間力が「静的」な内部状態であるのに対して,緩和現象ではさらに系の「動的」な性質を記述する必要がある. 例えば熱力学では状態方程式等を与えて系の性質を規定しなければならないように,動的な現象論では緩和(応答)函数をまず与えてから系の状態を規定していかなくてはならない.

たとえばある秩序変数$¥eta$を仮定し,それが歪みや応力といったマクロな物理量の影響を受ける場合を考える~¥cite{45}.非平衡状態で$¥eta$は時間と共に変化し,平衡値$¥eta_0$に近づいてゆく.この緩和過程を表す最も簡単な場合は

 ¥frac{d ¥eta}{dt}=-¥frac{¥eta - ¥eta_0}{¥tau}
(30)

と記述できる.$¥tau$は典型的な緩和時間である.平衡値$¥eta_0$も同様に歪みの影響を受ける.上式は$t = 0$で$¥eta = ¥eta'$であったとすると,

¥eta - ¥eta_0=(¥eta' - ¥eta_0)¥exp(-¥frac{t}{¥tau})
(31)

のように指数函数的に系の緩和が起こる事を表している.緩和函数(または応答函数)が時間と共に指数函数的に減衰する例は自然界にしばしば観られ,特に誘電体の誘電緩和現象で起きるデバイ型緩和現象は,磁化の緩和を観る交流磁化率や局所電荷ゆらぎの緩和を観る超音波分散の解析に類推して用いられる.

さて,系に音波が伝搬することにより歪みが弾性波の角周波数$¥omega$で周期的に断熱変化すると仮定する.

¥epsilon ¥propto ¥exp(-i ¥omega t)
(32)

すると,秩序変数の平衡値$¥eta_0$も弾性波の影響を受けるが,$¥eta$もまたある位相差を伴って変化するはずである.
その結果,式(30)は

¥frac{d ¥eta}{dt}=-i ¥omega ¥eta = -¥frac{¥eta - ¥eta_0}{¥tau}
(33)

と書け,

¥eta =¥frac{¥eta_0}{1-i ¥omega ¥tau}
(34)

となる.
弾性率は一般的な感受率(応答/外場)として理解すると(応力/歪み)$= ¥partial¥sigma / ¥partial¥epsilon$で与えられる~¥cite{46}.

¥chi^{¥ast} = ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{¥eta}+¥bigg(¥frac{¥partial¥sigma}{¥partial¥eta}¥bigg)_{¥epsilon} ¥frac{¥partial¥eta}{¥partial¥epsilon}
(35)

ここで第1項は静的弾性率,第2項は動的弾性率である.
式(33)を代入すると

¥chi^{¥ast} = ¥frac{1}{1-i ¥omega ¥tau} ¥bigg¥{ ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{¥eta}+¥bigg(¥frac{¥partial¥sigma}{¥partial¥eta}¥bigg)_{¥epsilon}  ¥frac{¥partial¥eta_0}{¥partial¥epsilon} -i¥omega ¥tau ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{¥eta} ¥bigg¥}
(36)

ここで,
$(¥partial¥sigma/¥partial¥epsilon)_{¥eta}+(¥partial¥sigma/¥partial¥eta)_{¥epsilon}(¥partial¥eta/¥partial¥epsilon)$
は充分に遅い緩和に対する応力の歪み微分であるから,歪みの変化が充分に遅い緩和過程($¥omega ¥tau ¥ll 1$)で平衡状態が壊れないとすると$¥eta$は常に平衡値$¥eta_0$をとるため,単純に$(¥partial¥sigma/¥partial¥epsilon)_{eq.}$と書ける.ここで

¥chi (¥omega ¥to 0) = ¥chi_0 = ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{eq.}
(37)

を低周波極限(即ち静的弾性率)と定義する.
一方,歪みの変化が非常に速い場合($¥omega ¥tau ¥gg 1$)では$¥eta$は系の変化に追いつけずに一定$¥eta_{¥infty}$に保たれる.その中間の周波数つまり$¥omega ¥tau ¥sim 1$の近傍では$¥eta$の変化は歪みのそれよりも位相が遅れ,応力の変化として観測される.ここで

¥chi (¥omega ¥to ¥infty) = ¥chi_{¥infty} = ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{¥eta}
(38)

を高周波極限と定義する.
式(37) と(38)を用いると,(36)は

¥chi^{¥ast} = ¥frac{1}{1-i ¥omega ¥tau} ¥bigg¥{ ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{eq.} - i¥omega ¥tau ¥bigg(¥frac{¥partial¥sigma}{¥partial¥epsilon}¥bigg)_{¥eta} ¥bigg¥} =  ¥frac{1}{1-i ¥omega ¥tau} (¥chi_0 - i¥omega ¥tau ¥chi_{¥infty})
(39)

と書ける.

先述の通り,$¥chi$は弾性率に限らず,一般的に交流磁化率や誘電緩和などの緩和現象を解析する感受率と類推できる.現実を描写するため,弾性率を実部と虚部に分ける.複素弾性率$¥chi^{¥ast}$と複素音速度$v^{¥ast}$の関係式

¥chi^{¥ast} = ¥rho v^{¥ast 2}
(40)

と,複素音速度と吸収係数αの関係式

¥frac{1}{v^{¥ast}} = ¥frac{1}{v}-i¥frac{¥alpha}{¥omega}
(41)

より,実際の超音波測定では複素弾性率$¥chi^{¥ast}=¥chi_{¥rm Re.}+i ¥chi_{¥rm Im.}$の実部は動的弾性定数$C(¥omega)$,虚部は超音波吸収係数$¥alpha(¥omega)$として観測される.

¥chi_{¥rm Re.} = C(¥omega) = C_{¥infty}+¥frac{C_0-C_{¥infty}}{1+¥omega^2 ¥tau^2}, ¥chi_{¥rm Im.} = ¥alpha(¥omega) = ¥alpha_{¥infty}+¥frac{C_0-C_{¥infty}}{2 ¥rho v^3_{¥infty}} ¥frac{¥omega^2 ¥tau}{1+¥omega^2 ¥tau^2}
(42,43)

図22は充填スクッテルダイトLaOs$_4$Sb$_{12}$の超音波分散の研究で得られた活性エネルギーと緩和時間を用いて計算された動的弾性率(左軸)と超音波吸収係数(右軸)である.図22の下に示すのはアレニウス型の緩和時間の温度依存性である.超音波の測定周波数$¥omega$(左軸から延ばした直線)と系(ラットリング)の緩和時間$¥tau$がマッチングする領域(共鳴条件$¥omega ¥tau ¥sim 1$)で,実部の弾性率は低周波極限$C_0$から高周波極限$C_{¥infty}$へ増大し,虚部の超音波吸収は極大を示す.これが次章で示すラットリングに伴う超音波分散の現象論的な解釈である.


図22 LaOs$_4$Sb$_{12}$の超音波分散の現象論的な解釈.



4.2 音響フォノンと音速の関係(位相速度と群速度についての蛇足)


先述した通り,パルスエコー法で得られる音速とは,非分散領域(音速に分散が無い領域)においては,超音波パルスの波束の間隔 [s]と伝搬経路長[m]から求められる速度を意味し,これはフォノンの群速度$v_{¥rm g}$に該当する.一般に音速という場合はこれを指すことが多い.一方,位相比較法で得られる「音速」とは,一定の位相をもった波面が伝搬する速度のことを指し,これはフォノンの位相速度$v_{¥rm p}$に該当する.先述の通り,実際の測定では一定位相を持つ連続波をパルス化して入射しており,入射波束が持つ位相と基準信号の位相差を検出し,位相差を一定(即ち波数$k$を一定)に保つように周波数$¥omega$に負帰還をかけ,位相速度の相対変化$¥Delta v_{¥rm p}(¥omega)/v_{¥rm p}(¥omega)$を周波数の相対変化$¥Delta ¥omega/¥omega$として読み替えている.分散領域では群速度と位相速度が一致しない($v_{¥rm g} ¥neq v_{¥rm p}$)が,非分散領域では一致する($v_{¥rm g} = v_{¥rm p}$)ため,位相比較法は両者を測定していることになる.

ここで慧眼なる読者は気づかれたかもしれないが,結晶にモノクロマティックな(単一周波数を持った)超音波を入射する場合,分散領域ではある周波数$¥omega$に対応するフォノンの位相速度が変化し,超音波が伝搬しなくなることが懸念される.例えば図22にあるように,緩和時間がアレニウス型の温度依存性を示す時,厳密にモノクロマティックな超音波を用いた実験を行った場合,群速度と位相速度が異なるので,パルスエコー間隔を追った実験では緩和に伴い位相速度が変化し,パルス波の大部分が吸収されるため,音速の低周波極限から高周波極限への変化は不連続なデータとして観測されるはずである.しかし,実際は超音波トランスデューサの特性上,ある帯域幅を持った波群が入射されているため,我々が実験で作り出せる超音波は完全なモノクロ波ではない.よって,分散領域でも音速の相対変化をある程度連続的に追う事ができる.位相比較法では分散領域において位相速度が変化しても,周波数分布の裾の周波数帯の波が伝搬し続けるので,位相信号を見失う事無く追跡し,負帰還によって変調される周波数の相対変化から位相速度の相対変化を観測することができる.


(第5章1節に続く)


5.2 3-20-6系クラスレート化合物

Sep 29, 2011


5.2 3-20-6系クラスレート化合物



図23 R$_3$Pd$_{20}$Ge$_6$の結晶構造.


超音波物理によるラットリング研究の扉を開いた先駆的な仕事は後藤・根本グループによる2003年のCe$_3$Pd$_{20}$Ge$_6$の四極子効果の研究である[56].本物質の結晶構造を図23に示す.結晶学的に異なる二つの希土類サイトが存在し,それぞれの希土類イオンは異なる原子配置のカゴによって囲まれている.Ceの基底状態が各サイトによって異なり,1.2 Kにおいて構造変化を伴う秩序を起こすことが中性子実験から解っていたため[30],$¥Gamma_8$基底に起因した強四極子秩序が予想されていた.そこで横波弾性定数の測定を行なったところ,$¥Gamma_3$対称性の四極子応答に関係する弾性定数$(C_{11}-C_{12})/2$に,相対変化で50¥%以上の結晶場効果によるソフト化が観測され(図24),併せて行った熱膨張実験により強四極子秩序の対称性は$¥Gamma_3$対称性であることが明らかになった.一方,$¥Gamma_5$対称性の四極子応答である弾性定数$C_{44}$にも結晶場効果によるソフト化が現れるが,図25(b)に示すとおり周波数依存性を伴うアップターンと超音波吸収が観測された.測定周波数を高めると弾性定数のアップターンの温度と超音波吸収係数のピークが高温度側にシフトする.この弾性異常はアレニウス型の緩和時間の温度依存性で良く説明できるため,熱活性型の緩和現象が起源であることがわかる.


図24 Ce$_3$Pd$_{20}$Ge$_6$の弾性定数$(C_{11}-C_{12})/2$と$C_{44}$の温度依存性. [57]



図25 La$_3$Pd$_{20}$Ge$_6$とCe$_3$Pd$_{20}$Ge$_6$の弾性定数$C_{44}$に現れる超音波分散 [59].


興味深い事に$(C_{11}-C_{12})/2$ではそのような超音波分散は観測されない.この超音波モードによる応答の違いと,原子カゴの幾何学的配置を鑑み,根本らは価数揺動系Yb$_4$As$_3$の電荷秩序で論じた局所電荷ゆらぎの群論的考察[60]を適用した.O$_{¥rm h}$対称性を持つ$4a$サイトに注目し,$¥langle 111 ¥rangle$方向の8つのオフセンター位置にゲストイオンの電荷が配位する空間を仮定した.この配位空間の既約分解を行うと$¥Gamma_1 ¥oplus ¥Gamma_2 ¥oplus 2¥Gamma_4 ¥oplus 2¥Gamma_5$となり,$¥Gamma_5$対称性の電荷揺らぎモード(オフセンターモード)が存在する.そのオフセンターモードが熱活性型の振動をする場合,$¥Gamma_5$対称性の歪み$¥epsilon_{yz}, ¥epsilon_{zx}, ¥epsilon_{xy}$に対応する弾性定数$C_{44}$に緩和現象が現れるというシナリオが成り立つ.振動モードの対称性が明確に選択則として弾性定数というマクロな物理量に現れているため,この現象を原著論文[54]では「オフセンターラットリング」と名付けている.ここで注意してもらいたいのは,「オフセンター」といっても,熱活性運動するイオンはどこかのオフセンター位置を選んで静的に止まっているのではないということである.結晶は立方対称性を保っているため, 「オフセンターラットリング」とは,カゴの中のオフセンター位置をめぐる,ある対称性を持ったゲストイオン電荷分布の振動であると考えられる,

Ce$_3$Pd$_{20}$Ge$_6$の超音波分散は8 Tの磁場を印加しても変化しないことがわかった.カゴに内包するイオンを非磁性のLaに変えたLa$_3$Pd$_{20}$Ge$_6$でも同様の実験を行なったところ,$1/T$に比例する結晶場効果によるソフト化が上乗せされていた弾性定数の温度依存性が,上述したフォノンのバックグラウンドによる単調な増加のみになり,10-30 K付近に現れる磁場に鈍感な周波数依存性を明瞭に観測することができた.La$_3$Pd$_{20}$Ge$_6$の場合も$C_{11}$, $(C_{11}-C_{12})/2$モードには特に異常は無い(図26).さらに驚くべきことに,$C_{44}$において$1/T$に比例した弾性定数の減少が$¥sim 3$ K以下の極低温領域に現れ,当時の後藤グループの希釈冷凍機による最低到達温度の20 mKまでそれが収束する兆候が無い(図27).Laは$4f$ 電子を持たないから,このソフト化の起源は$f$電子の四極子自由度とは別の起源である.本稿では,結晶場効果に由来するソフト化と区別するために,La系で極低温領域に現れるソフト化を「低温ソフト化」という用語で定義する.

この「低温ソフト化」は磁場を16 Tまでかけても全く依存しないことから,超音波分散と同様に磁気的な起源の可能性は排除される.超音波測定に用いられたLa$_3$Pd$_{20}$Ge$_6$単結晶は残留抵抗比$¥sim 19.9$であり、音響ドハース振動が観測されているため,不純物による電荷自由度の影響とも考え難い.$C_{11}$, $(C_{11}-C_{12})/2$にも微小ながら同じ温度領域に「低温ソフト化」が観測されるが,$C_{11}$, $(C_{11}-C_{12})/2$の低温ソフト化は3 K付近から最低温度までの相対変化で$2 - 4 ¥times10^{-5}$程度であり,$C_{44}$の低温ソフト化の変化量($2 ¥times 10^{-4}$)が他のモードと比較しても一桁大きいことから,$¥Gamma_5$対称性の電荷自由度が低温ソフト化の起源であることを示唆する.$¥Gamma_5$対称性のオフセンターモードは三次元表現であるため,オフセンター電荷自由度の量子基底状態($f$電子の結晶場基底状態とは異なる自由度であることに注意)が三重縮退であると仮定した場合,ランダウの理論から低温で対称性を破る相転移が起こると期待される.例えば,価数揺動物質であるYb$_4$As$_3$では$4f$電子の$¥Gamma_5$型電荷揺らぎが秩序化し,構造相転移が起きる.しかし,La$_3$Pd$_{20}$Ge$_6$では20 mKまで相転移は観測されず,結晶構造は立方晶を保ったままである.そのため,三重項$¥Gamma_5$対称性の基底状態が縮退を保ったまま残っている事を示している.これらの実験事実から,後藤らは配位空間におけるオフセンター多重井戸ポテンシャル間の量子力学的なトンネル状態にあるという描像を提案した.このオフセンタートンネリングのアイデアは,不純物をドープしたアルカリハライドNaCl:OHやKCl:Liで観測された低温ソフト化を理解するために用いられたものである[61,62].NaCl:OH,KCl:Liの場合は基底が一重項であり,全モードに低温ソフト化が観られるが,それらは絶対零度に向かって一定値に収束する(図28).La$_3$Pd$_{20}$Ge$_6$の$C_{44}$の低温ソフト化が20 mK以下でどうなるのかを調べるために,より極低温における詳細な測定は必須である.しかしながら,その温度領域はもはや核スピンのエネルギースケールにはいってくるため,低温ソフト化の起源として核四極子と歪みの相互作用の影響も視野に入れなければならないかもしれない.


図26 La3Pd20Ge6の弾性定数C11 ,(C11−C12 )/2,C44の温度依存性 [56]



図27 La3Pd20Ge6の弾性定数C44の温度依存性の極低温領域拡大図(挿入図は弾性定数 (C11−C12)/2とC44を10 Kからの相対変化で比較したもの)[56]



図28 OHをドープしたNaClの弾性定数C11, (C11−C12)/2,C44の温度依存性と,NaCl:OHの[100] 断面の模式図(右下)[61]


(第5章3節に続く)

VLTLab Home Page Syndicate this site (XML)

Contents  

Archives  

Today's Quotes

Kaleidoscope

<a href='https://phys.sci.hokudai.ac.jp/LABS/kyokutei/vlt/yanagisawa//Kaleidoscope/cages.htm'>解説記事を読む...</a> ▶Read this article...

Fundings

Eco-inventry

path: