research


我々は実験系の研究グループです。
物性物理学は多様な物質現象の中から新たな物理の基本法則を見つけ出すことを目指す学問です。
通常は熱散乱のベールに隠されている量子力学的な基底状態を、
極低温環境下における物性測定で詳らかにするべく、日々研究を続けています。
ここでは現在進行中の研究テーマと、実験手法・技術についてご紹介します。


研究内容

 5f 電子系の磁性と超伝導
   URu2Si2における隠れた秩序と微弱反強磁性
   重い電子系超伝導体UPt3における極低温磁化測定
   重い電子系超伝導体UBe13の超伝導混合状態における磁気特性
   112希薄系における局所的非フェルミ液体異常
 4f 電子系の磁性と超伝導
   EuIn2P2における磁場中比熱測定
   磁場に鈍感な重い電子系スクッテルダイト化合物 SmOs4Sb12 のラットリング
   (ラットリングを示す充填スクッテルダイト化合物の磁性と超伝導)
   TmM2Si2(M: 遷移金属)系の磁性
   非フェルミ液体的振る舞いを示す YbRh2Si2 の極低温磁性


研究手法/実験装置(一覧)

極低温基礎物性測定
   キャパシタンス式極低温精密磁力計を用いた磁化測定(100μW希釈冷凍機)
   SQUID磁束計による磁化測定、交流磁化率測定
   緩和法比熱測定(HELIOX)
   電気抵抗測定(Handmade希釈冷凍機)
 高圧下物性測定
   インデンターセルによる高圧下電気抵抗・AC磁化測定
   MPMS用インデンター&ピストンシリンダセルによる静水圧下DC磁化測定
   ピストンシリンダセル断熱法比熱測定
 超音波物性測定
   位相比較法(ヘテロダイン検波)を用いた弾性定数測定
   蒸着装置&ネットワークアナライザ(超音波圧電素子制作)
微視的測定
   中性子散乱実験
   共鳴X線散乱実験
   ミュオンスピン回転・緩和・共鳴(muSR)実験
物質合成
   テトラアーク炉によるチョクラルスキー法単結晶試料育成
   プラズマジェット炉による多結晶試料育成
   フラックス法による単結晶試料育成
   放電加工機
   物質評価(X線構造解析・EPMA等)




インデンターセルを用いた高圧下電気抵抗・交流帯磁率測定

図1 インデンターセル概観

インデンターセルの簡単な模式図を図2に示しています。中心に穴の開いたNi-Cr-Al合金製ブロック(hole piece)にあけた穴に液体の圧力媒体を満たし、先端部分に試料を取り付けたインデンター(NMWC:非磁性タングステン鋼)を差し込みます。この状態からプレス機で加圧することによって、hole pieceの穴を変形させて圧力を発生させる仕組みです。圧力はロックナットを締めることで保持しています。

図2 インデンター型圧力セルの模式図

電気抵抗測定には4端子法を用いています。端子付にはスポット溶接や銀ぺーストなどをもちいています。(図3)
非常に細かい作業のため写真のように顕微鏡を見ながらの作業となるため学生たちもはじめは苦労しますが 、一か月ほどで誰でもセッティングができるようになります。(図4)

図3 スポット溶接をしているところ

図4 

交流帯磁率測定のためには微小なコイルが必要となります。(図5)
図6は私たちの研究室の学生が手作りした「巻き線機」です。手作り感たっぷりですが、1mm以下のコイルを非常に美しく巻くことができる優れモノです。

図5 インデンターセルに内蔵する微小コイル
(提供:島根大・藤原先生)

図6 ホームメイド「巻き線機」


Category: Research | Static URL: /research/indenter.htm | Edit



X線を用いた物質評価

アーク炉やプラズマジェット炉で作製した試料をX線を用いて評価します。評価の手法はラウエ法、粉末ディフラクトメーター法、EPMA(Electron Probe Micro Analyzer)です。 ・ラウエ法 図1のようにX線を単結晶試料に当てて、散乱したX線でフィルムを感光させます。このときブラッグの反射条件を満たしてX線が強めあうと図2のように黒い斑点がフィルムに現れます。この斑点の対称性(4回対称、鏡映面等)は結晶の対称性を反映しているので結晶面の対称性、軸方向が分かります。

図1 ラウエ法の概念図(背面反射法)

図2 ラウエ写真の例

・粉末ディフラクトメーター法 図4のように入射X線に対して試料、計数管を回転させ、X線と試料のなす角度がθのときに散乱されるX線の強度を調べます。θ がブラッグの反射条件を満たしたときにX線は強めあい、ピークとなって観測できます。得られたディフラクトパターンは物質の結晶構造や構成元素によって異なるのでシミュレーションと比較することで試料を同定することができます。

図3 粉末ディフラクトメーター法の概念図

・EPMA 試料に電子線を照射すると図5のような反応がおこります。この中の特性X線いうものは波長が原子によって決まっているX線です。電子線を照射したときに飛び出してくる特性X線の波長のスペクトルを調べることで電子線の当たった領域の構成元素と割合が分かります。

図4 電子線を試料に照射したときの反応


Category: Research | Static URL: /research/XRD.htm | Edit



ピストンシリンダーによる高圧下電気抵抗・AC磁化率測定

ハイブリッド型ピストンシリンダーセル(Ni-Cr-Al合金とCu-Be合金の二層構造)を用いて、最大2.5 GPa(25000気圧)までの電気抵抗率・交流帯磁率などのバルク測定が可能です。試料空間が大きいため感度のよい測定が行えるのが特徴です。コンパクトなサイズのため、PPMSや希釈冷凍機などに取り付け可能です。

図1 ピストンシリンダーセル概観


Category: Research | Static URL: /research/piston.htm | Edit



MPMS用ピストンシリンダーによる高圧下DC磁化測定

ドイツ・Braunschbeing工科大学Stefan Su(ウムラウト)llow 教授らによって開発されたDC磁化測定用の単層式ピストンシリンダーセル(Cu-Be合金製)です。市販のSQUID磁力計(MPMS, Quantum Design社)に取り付け可能となっており,理想的なSQUID電圧波形が得られるように非常に細長い構造になっています(全長~150 mm)。温度は2 K、圧力は約1 GPa(10000気圧)までの測定が可能です。

図1 MPMS用ピストンシリンダーセル概観


Category: Research | Static URL: /research/MPMS_piston.htm | Edit



緩和法比熱測定

熱緩和法とは、試料に与えていた熱を切った際の試料温度の緩和現象から比熱を求める実験手法です。具体的には、試料の回りに精密に温度コントロール可能な熱浴T0を作り、試料と熱浴との間を比較的弱い熱伝導パス(熱伝導度KW)で結びます。(図1)試料部には小型の温度計とヒーターを装着し、このヒーターに通電する事で試料温度を熱浴よりΔT だけ高い定常状態で保持しておきます。その後、一気にヒーターを切ると熱伝導パスを通じて試料から熱浴に熱が逃げて行きます。この温度緩和過程は通常指数関数型になり、その時定数を解析する事により試料部の比熱を求めます。 この実験手法により、わずか数mg程度の小さな試料の比熱を広い温度範囲かつ強磁場中で測る事が出来ます。比熱からは物質のエントロピーを見積もる事ができて、系のもつ微視的自由度の振る舞いを予想できます。比熱は物質の性質を理解する上で最も重要な物理量のひとつです。我々の研究室では、
Heliox :0.36 [K] < T < 200 [K] 、 B < 12 [T] (図2)
PPMS :2 [K] < T < 380 [K] 、 B < 9 [T]    (図3)
これらの装置により比熱測定を行っています。図4にPPMSでの実際の測定結果を示します。

図1

図2

図3

図4


Category: Research | Static URL: /research/Heliox.htm | Edit



Menu: