«
Topics: Double ultrasonic dispersions due to rattling in SmOs4Sb12
| Main | 放電加工機 »


Topics: Double ultrasonic dispersions due to rattling in SmOs4Sb12

Magnetic-Field-Independent Ultrasonic Dispersions due to Rattling in the Magnetically Robust Heavy Fermion System SmOs4Sb12
Tatsuya YANAGISAWA, Yoichi IKEDA, Hitoshi SAITO, Hiroyuki HIDAKA, Hiroshi AMITSUKA, Koji ARAKI, Mitsuhiro AKATSU, Yuichi NEMOTO, Terutaka GOTO, Pei-Chun HO, Ryan E. BAUMBACH, and M. Brian MAPLE

Elastic properties of the filled skutterudite compound SmOs4Sb12 have been investigated by ultrasonic measurements. The elastic constant C12(\omega) shows two ultrasonic dispersions at ∼15 K and ∼53 K for frequencies \omega between 33 and 316 MHz, which follow a Debye-type formula with Arrhenius-type temperature-dependent relaxation times, and remain unchanged even with applied magnetic fields up to 10 T. The corresponding activation energies were estimated to be E2 = 105 K and E1 = 409 K, respectively. The latter, E1, is the highest value reported so far in the Sb-based filled skutterudites. The presence of magnetically robust ultrasonic dispersions in SmOs4Sb12 implies a possibility that an emergence of a magnetically insensitive heavy fermion state in this system is associated with a novel local charge degree of freedom which causes the ultrasonic dispersion.


J. Phys. Soc. Jpn. 80 (2011) 043601.

(also available on cond-mat/1010.1387)

SmOs_4Sb_12 Ultrasonic Dispersion

Figures (a) Comparison of the ultrasonic dispersions that appear in elastic constant C11 of ROs4Sb12 (R = La-Sm) at several frequencies. Lower arrowheads with numbers 1 and 2 indicate the relaxation point \omega\taui ∼ 1 for i = 1 and 2, respectively. (\omega is ultrasonic frequency and \tau is relaxation time) The displayed data have been shifted to eliminate overlapping with each other and the SmOs4Sb12 data are magnified three times for the \Delta C11/C11-axis. (b) Arrhenius plots of the characteristic parameters of the ultrasonic dispersions (Attempt time: \tau0(i), Activation Energy: Ei) for ROs4Sb12 (R = La-Sm).

(*This research was performed at UC San Diego, Hokkaido University, and Niigata University in 2010.)

Posted at 12:00 in Research|




WriteBacks
TrackBack ping me at
https://phys.sci.hokudai.ac.jp/LABS/kyokutei/vlt/research/SmOs4Sb12.
Post a comment

writeback message:















Menu: