ピストンシリンダーによる高圧下電気抵抗・AC磁化率測定
ハイブリッド型ピストンシリンダーセル(Ni-Cr-Al合金とCu-Be合金の二層構造)を用いて、最大2.5 GPa(25000気圧)までの電気抵抗率・交流帯磁率などのバルク測定が可能です。試料空間が大きいため感度のよい測定が行えるのが特徴です。コンパクトなサイズのため、PPMSや希釈冷凍機などに取り付け可能です。
図1 ピストンシリンダーセル概観
MPMS用インデンターセルによる静水圧下DC磁化測定
図1のMPMS用インデンターセルを用いることで高圧下(~3 GPa)DC磁化測定を行うことができます。
図1 MPMS用インデンターセル
試料を圧力セルに入れて測定すると、試料の磁化とBack Ground である圧力セルの磁化を足した磁化が測定されます。そこで試料のみの磁化を得るためには一般的に図2のようにBack Groundの磁化を差し引く方法が用いられます。MPMSは電圧波形をフィットして磁化を求めていますが圧力セルを測定した時の電圧波形は図3のように高温で乱れてしまいます。フィットして磁化を正確に求めることがでないので、図2の方法では高温における試料の磁化を求めることができません。

図2 磁化の差し引きの様子 図3 試料と圧力セルの高温での電圧波形
そこで私たちの研究室では図4のように電圧波形の段階で差し引きを行い、それをフィットして磁化を求めています。この方法を用いれば電圧波形の乱れる高温でも上手くフィットでき磁化を正確に求めることが可能になります。
図4 電圧波形の差し引きの様子
図5はMPMS用インデンターセルと電圧波形の差し引きを用いて測定したURu2Si2の高圧下における磁化率の温度依存性です。この試料に対しては報告例のない最大圧力1.87 GPaの精密磁化測定に成功しています。
図5 URu2Si2の高圧下における磁化率の温度依存性
MPMS用ピストンシリンダーによる高圧下DC磁化測定
ドイツ・Braunschbeing工科大学Stefan Su(ウムラウト)llow 教授らによって開発されたDC磁化測定用の単層式ピストンシリンダーセル(Cu-Be合金製)です。市販のSQUID磁力計(MPMS, Quantum Design社)に取り付け可能となっており,理想的なSQUID電圧波形が得られるように非常に細長い構造になっています(全長~150 mm)。温度は2 K、圧力は約1 GPa(10000気圧)までの測定が可能です。
図1 MPMS用ピストンシリンダーセル概観
X線を用いた物質評価
アーク炉やプラズマジェット炉で作製した試料をX線を用いて評価します。評価の手法はラウエ法、粉末ディフラクトメーター法、EPMA(Electron Probe Micro Analyzer)です。 ・ラウエ法 図1のようにX線を単結晶試料に当てて、散乱したX線でフィルムを感光させます。このときブラッグの反射条件を満たしてX線が強めあうと図2のように黒い斑点がフィルムに現れます。この斑点の対称性(4回対称、鏡映面等)は結晶の対称性を反映しているので結晶面の対称性、軸方向が分かります。|
図1 ラウエ法の概念図(背面反射法) |
図2 ラウエ写真の例 |

図3 粉末ディフラクトメーター法の概念図
・EPMA 試料に電子線を照射すると図5のような反応がおこります。この中の特性X線いうものは波長が原子によって決まっているX線です。電子線を照射したときに飛び出してくる特性X線の波長のスペクトルを調べることで電子線の当たった領域の構成元素と割合が分かります。
図4 電子線を試料に照射したときの反応
放電加工機
金属ワイヤーに電気を通し、試料を溶かしながら正確に平面を出すことで、試料の整形を行うことができます。 試料の切断は油の中で行われ、放電による過剰な発熱や、試料の切りくずが空気中に舞うことを防ぎます。よって、放射性物質でも安全に試料整形することができます。
図1 実際にスパークカッターで試料を加工する過程
(軸方向はX線ラウエ法などで決定している)


