03-10-28
ƒz[ƒ€ γ‚Φ 03-01-24 03-03-12 03-04-14 03-05-12 03-06-04 03-06-11 03-07-08 03-09-25 03-10-14 03-10-02 03-10-28 03-11-18 03-12-16

@

horizontal rule

u‰‰‘θ–ځF@Tri-refringence, Superprisms, and Pulses-on-the-fly 
                                                  in Photonic Crystal Waveguides

u@Žt@F@Prof. Jeremy J. Baumberg
@@@@@@     (Department of Physics & Astronomy, University of Southampton, 
                 and Mesophotonics Ltd., Chilworth Science Park,Southampton, S016 7NP, UK )

“ϊ@Žž@F@•½¬15”N10ŒŽ28“ϊi‰Ξj@17:00-
κ@Š@F@–kŠC“Ή‘εŠw‘εŠw‰@HŠwŒ€‹†‰Θ  —ΚŽq•¨—HŠwκU‰ο‹cŽΊ A3-62

horizontal rule

—v@Ž|@F
@ @Photonic Crystal Waveguides promise novel optical functionality in a wide variety of ways due to the considerable modification in optical propagation and interactions induced in these sub-micron periodic structures. Using planar silicon-compatible processing we have produced a wide variety of nanostructured devices over the past few years [1-8] that exhibit high quality photonic bandgap and photonic crystal features. In particular we have gained an understanding of such devices of ultrawide bandwidth ranges allowing us to provide systematic comparison with a variety of our modelling techniques. Recently we have explored how light propagates through photonic crystals by directly tracking the temporal delay of each wavepacket component [1]. In this talk we will discuss a number of the features of photonic crystal waveguides that we are investigating.

[1] "Separation of Photonic Crystal Waveguides Modes using Femtosecond Time-of-Flight", M. C. Netti, C. Finlayson, J. J. Baumberg et al. Appl. Phys. Lett. 81, 3927 (2002). 
[2] "Optical Trirefringence in Photonic Crystal Waveguides", M.C. Netti, A. Harris, J.J. Baumberg et al., Phys. Rev. Lett. 86, 1526 (2001). 
[3] "Complete and absolute photonic bandgaps in highly symmetric photonic quasicrystals embedded in low refractive index materials", M.E. Zoorob et al., Mat.Sci.Eng.B 74, 168 (2000). 
[4] "Experimental investigation of photonic crystal waveguide devices and line-defect waveguide bends", M.D.B. Charlton et al., Mat.Sci.Eng.B 74, 17 (2000).
[5] "Complete photonic bandgaps in 12-fold symmetric quasicrystals", M.E. Zoorob, M.B.D. Charlton, G.J. Parker, J.J. Baumberg and M.C. Netti, Nature 404, 740 (2000).
[6] "Visible Photonic Bandgap Engineering in Silicon Nitride Waveguides", M.C. Netti, M.B.D. Charlton, G.J. Parker, J.J. Baumberg, Appl. Phys. Lett. 76, 991 (2000). 
[7] "Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide", M.D.B. Charlton et al., Mat.Sci.Eng.B 49, 155 (1997).
[8] "Ultra-Broadband Transmission Measurements on Waveguides of Silicon-Rich Silicon Dioxide", RT Neal, CE Finlayson, MC Netti, MDCCharlton, GJ Parker, JJ Baumberg, Appl. Phys. Lett. (2003).

horizontal rule


’˜bl@@@Ό“c  — i–kŠC“Ή‘εŠw‘εŠw‰@HŠwŒ€‹†‰Θj
@@@@@@@@@@@@iTel: 011-706-7190, omatsuda@eng.hokudai.ac.jpj

horizontal rule

@

@

@

@

@