

北大院理 東大物性研A 物質·材料研B 野崎 順 横山 淳 宮崎 志功 畠山 英樹 天谷 健一 網塚 浩

榊原 俊郎A 阿部 英樹B 北澤 英明B 木戸 義勇B

#### $Tm^{3+}$

 $4f^{12} {}^{3}H_{6} \mu_{eff} = 7.57$ 

 $Tm^{2+}$ 

 $4f^{13}$   $^{2}F_{7/2}$   $\mu_{eff}=4.54$ 

TmM<sub>2</sub>Si<sub>2</sub>についてはTm<sup>3+</sup>としての振る舞いが強く見られる

ThCr<sub>2</sub>Si<sub>2</sub>型



結晶場(I/4mmm D<sub>4h</sub>)

 $H_{CEF} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_4^4 O_4^4 + B_6^0 O_6^0 + B_6^4 O_6^4$ J-multiplet(J=6,Tm<sup>3+</sup>の場合)

 $2\Gamma_1 + \Gamma_2 + 2\Gamma_3 + 2\Gamma_4 + 3\Gamma_5$ 

 $\Gamma_1 \sim \Gamma_4$ :Singlet  $\Gamma_5$ :Doublet

#### 過去文献

TmAu<sub>2</sub>Si<sub>2</sub>

#### 過去文献無し





[1] J. Leciejewicz and A. Szytula, Solid State Commun. 48,55(1983)
[2] K.Hiebl and P.Rogal, J. Magn. Magn. Mater 50,39(1985)

Sample作成

TmAu<sub>2</sub>Si<sub>2</sub>

Poly作成 3極アーク炉

Single作成 Czochralski引き上げ法

ブリッジマン法(物質材料研にて)

(結晶化しづらく成功に至っていない)

TmPt<sub>2</sub>Si<sub>2</sub>

Poly作成 3極アーク炉

Single作成 Czochralski引き上げ法

TmCo<sub>2</sub>Si<sub>2</sub>

Poly作成 3極アーク炉

Single作成 Czochralski引き上げ法

(蒸発が激し))

実験

| TmAu <sub>2</sub> S  | $\mathbf{i}_2$ |        |             |         |
|----------------------|----------------|--------|-------------|---------|
| 磁化                   | SQUID          | poly   | 2~360K      | 0~5.5T  |
|                      | AC磁化           | 率 poly | 0.1 ~ 6K    |         |
| 比熱                   | 緩和法            | poly   | 0.36 ~ 100K | 0 ~ 12T |
| TmPt <sub>2</sub> Si | 2              |        |             |         |
| 磁化                   | SQUID          | c-axis | 2~360K      | 0~5.5T  |
|                      |                | a-axis | 2~360K      | 0~0.1T  |
| 比熱                   | 緩和法            | c-axis | 0.36 ~ 100K | 0~2T    |
| TmCo <sub>2</sub> S  | i <sub>2</sub> |        |             |         |
| 磁化                   | SQUID          | c-axis | 2~360K      | 0~5.5T  |
|                      |                | a-axis | 2~360K      | 0~5.5T  |
| 比熱                   | 緩和法            | a-axis | 0.36 ~ 100K | 0 ~ 12T |
| 電気抵抗                 | DC             | a-axis | 1.4 ~ 300K  |         |





多段転移ににもかかわらずentropyは高々ln2。













# CONCLUSION

### •TmAu<sub>2</sub>Si<sub>2</sub>

•低温で多段転移がみられた。

## •TmPt<sub>2</sub>Si<sub>2</sub>

•1.1 [K]で鋭利な転移が見られた。

### • $TmCo_2Si_2$

- •多数の相をもち、複雑な物性を示す。
- •磁場中で転移温度の上昇が見られた。

•高磁場中での比熱にいくつか異常が見られ、新たな相の存在の可能性がある。