● 一般の場合

(80)

(83) より

(88)

pV = RT の場合

理想気体のエネルギーは温度のみの関数で、体積によらない

変数変換: $(T,V) \rightarrow (T,p)$

$$d'Q = dU + pdV$$

$$d'Q = \left(\frac{\partial U}{\partial T}\right)_p dT + \left(\frac{\partial U}{\partial p}\right)_T dp + p\left(\frac{\partial V}{\partial T}\right)_p dT + p\left(\frac{\partial V}{\partial p}\right)_T dp$$

$$dS = \frac{1}{T} \left[\left(\frac{\partial U}{\partial T} \right)_p + p \left(\frac{\partial V}{\partial T} \right)_p \right] dT + \frac{1}{T} \left[\left(\frac{\partial U}{\partial p} \right)_T + p \left(\frac{\partial V}{\partial p} \right)_T \right] dp$$

$$\frac{1}{T}\frac{\partial^{2}U}{\partial p\partial T} + \frac{1}{T}\left(\frac{\partial V}{\partial T}\right)_{p} + \frac{p}{T}\frac{\partial^{2}V}{\partial p\partial T} = \frac{-1}{T^{2}}\left(\frac{\partial U}{\partial p}\right)_{T} + \frac{1}{T}\frac{\partial^{2}U}{\partial T\partial p} + \left(\frac{\partial}{\partial T}\frac{p}{T}\right)_{p}\left(\frac{\partial V}{\partial p}\right)_{T} + \frac{p}{T}\frac{\partial^{2}V}{\partial T\partial p}$$

変数変換: $(T,V) \rightarrow (p,V)$

$$d'Q = dU + pdV$$

$$d'Q = \left(\frac{\partial U}{\partial p}\right)_{V} dp + \left[\left(\frac{\partial U}{\partial V}\right)_{p} + p\right] dV$$

$$\frac{\partial}{\partial V} \left[\frac{1}{T} \left(\frac{\partial U}{\partial p} \right)_{V} \right] = \frac{\partial}{\partial p} \left[\frac{1}{T} \left[\left(\frac{\partial U}{\partial V} \right)_{p} + p \right] \right]$$

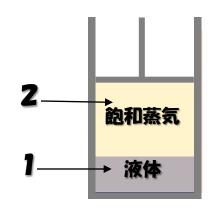
15. クラペイロンの式 臨界等温線 臨界点 T_c : 臨界温度 液体-蒸気系の状態図 p_c : 臨界圧力 液体 気体 V_C : 臨界体積 等温線群 液体+ 不飽和蒸気 飽和蒸気 不飽和蒸気 飽和蒸気 飽和蒸気 液体 液体 液体

■ クラペイロンの式

 m_1, m_2 :液体と蒸気の質量

 u_1, u_2 :液体と蒸気の単位質量当たりのエネルギー

 $u_1, \, \nu_2 \,$:液体と蒸気の単位質量当たりの体積



dm を液体状態から蒸気状態へ移す等温過程を考える - 圧力一定 -

	前			後		
	質量	体積	エネルギー	質量	体積	エネルギー
液体	m_1	$m_1 v_1$	m_1u_1	$m_1 - dm$	$(m_1 - \mathrm{d}m)v_1$	$(m_1 - \mathrm{d}m)u_1$
蒸気	m_2	$m_2 v_2$	m_2u_2	$m_2 + \mathrm{d}m$	$(m_2 + \mathrm{d}m)v_2$	$(m_2 + dm)u_2$
液体						
+						
蒸気						

$$dV = \{v_2(T) - v_1(T)\}dm$$
 (91)

$$dU = \{u_2(T) - u_1(T)\}dm$$
 (92)

(93)

(91)、(92)より

(93)

(88) より

(94)

クラペイロンの式

 λ :蒸発の潜熱

クラペイロンの式の応用-沸点での水蒸気の $rac{\mathrm{d}p}{\mathrm{d}T}$ -

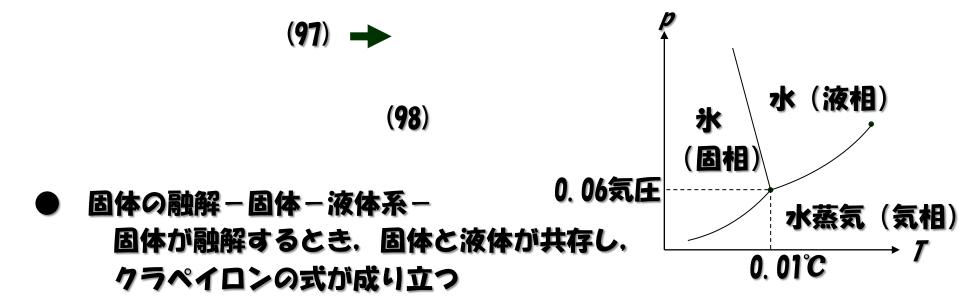
$$\lambda = 540 \ cal / g = 2260 \times 10^7 \ erg / g$$

 $v_2 = 1677 \ cc / g, \ v_1 = 1.043 \ cc / g$
 $T = 373.1 \ K$

● 近似
$$v_2 >> v_1 \rightarrow v_2 - v_1 \approx v_2$$
 1グラムの蒸気

(95)

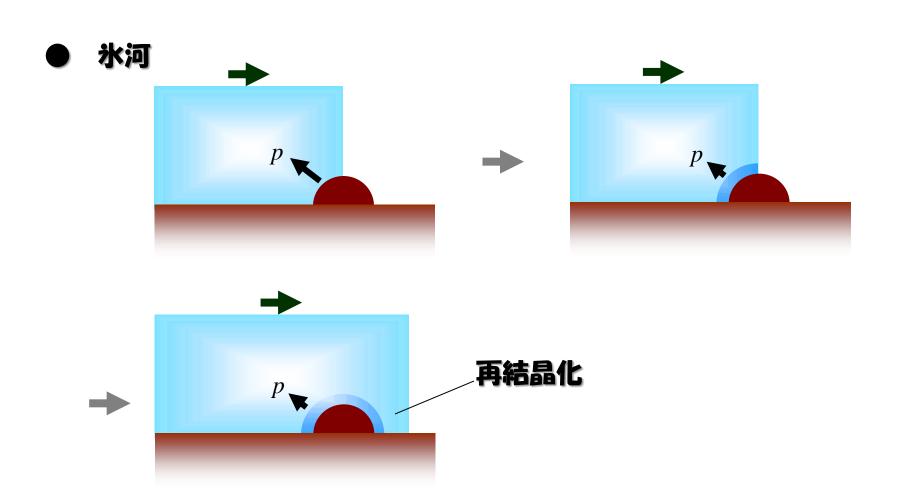
(96)



氷-水の系

$$\lambda = 80 \ cal / g = 335 \times 10^7 \ erg / g$$
 $T = 273.1 \ K$
 $v_1 = 1.0907 \ cc / g$, $v_2 = 1.00013 \ cc / g$

圧力が134気圧増すと氷の融点は1℃下がる 圧力が増加すると氷の融点は下がる!



●理想気体の状態方程式は、

$$pV = RT$$

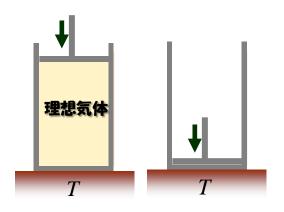
$$pV = nRT$$
(99)

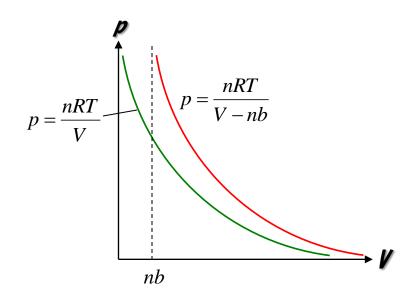
a :

b :

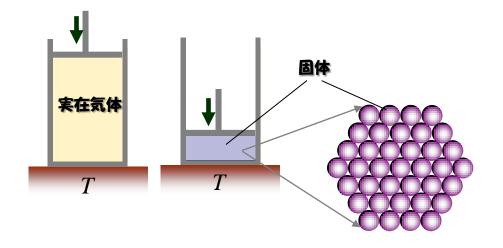
■ 分子の体積を考慮

●理想気体





●実在気体



b : *nb* :

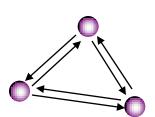
→____

(a)

■分子の凝集力を考慮(気体→液体→固体)

- ●平均場の方法
- ・2つの分子間に arphi(r) の相互作用のポテンシャルエネルギーが働くとする

・相互作用のないときと比べ気体のエネルギーは、次式だけ減少する → β



(103)

凝集力のポテンシャルエネルギー

$$U = f(T) - \frac{n^2}{V} a$$

 \rightarrow \rightarrow

式(a), (b)より,

(99)

ファン=デル=ワールス方程式は気体、液体状態を記述する簡単な式

■凝集力の起源:ファン=デル=ワールスーロンドン相互作用

●Ar, Neのような希ガス

中性原子間には静電気力は働かない

極短い時間の範囲では電気な ゆらぎが存在

電場が存在すると周りの 原子も分極

双極子間に引力が働く

