熱物理学演習 1 1

- [1] 以下の問いに答えよ。
 - (a) 理想気体の準静的断熱過程に関するポワソンの式「 $PV^{\gamma} = -$ 定」を用いて、断熱圧縮率

$$\kappa_S \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S$$

の表式を求めよ。ここで添字のSはエントロピーを表す。

- (b) 気体中を伝わる音波の速さ u は、気体の密度 ρ と断熱圧縮率を用いて、 $u=(\rho\kappa_S)^{-1/2}$ と表すことができる。空気を理想気体とみなし、1 気圧、0°C における空気中の音速 u [m/s]、および、0°C と 1°C の音速の差 Δu [m/s] を求めよ。ただし空気の分子量 M(=1 モルあたりのグラム数) を 28.9、空気のポアソン比 γ を $\gamma=1.41$ とする。
- [2] 以下の問いに答えよ。
 - (a) ギブスの自由エネルギー G(T,P,N) が化学ポテンシャル μ と系の粒子数 N を用いて $G=\mu N$ と表せることを示せ。
 - (b) ギブス-デュエムの関係式 $-SdT + VdP Nd\mu = 0$ を証明せよ。
- [3] n モルの理想気体に関する以下の間に答えよ。ただし、定積モル比熱 C_V は一定とする。
 - (a) 内部エネルギーU = U(T, V)の表式を求めよ。
 - (b) エントロピーS = S(T, V)の表式を求めよ。
 - (c) 理想気体の化学ポテンシャル $\mu=\mu(T,P)$ の表式を求めよ。ただし、アボガドロ数を $N_{\rm A}$ で表す。