量子統計力学と密度行列

[1] 全系と部分系

\[\xi \equiv (x_1, x_2, \ldots, x_N) : \text{部分系の全座標} \]
\[q : \text{残り（外界）の全座標} \]

ここで、\(x_j \equiv (r_j, \sigma_j) : \text{空間座標とスピン座標} \)

例 1 : \[\begin{align*}
\xi &: \text{結晶の全粒子} \\
q &: \text{結晶の外の全粒子}
\end{align*} \]
例 2 : \[\begin{align*}
\xi &: \text{結晶の全電子} \\
q &: \text{結晶内の格子振動}
\end{align*} \]

\((\xi, q) \) は膨大な自由度をもつ。注目する系 \(\xi \) に対する外界の影響 \(q \) をいかに取り込むか？

- 外界と部分系の相互作用がない場合——純粋系
 部分系は波動関数 \(\Phi(\xi, t) \) で記述される。

\[\Phi(\xi, t) \] の完全規格直交系 \(\phi_\nu(\xi, t) \) による展開:

\[\Phi(\xi, t) = \sum_\nu a_\nu \phi_\nu(\xi, t), \quad (1) \]

\[\sum_\nu |a_\nu|^2 = 1, \quad \Longleftrightarrow \quad \int |\Phi(\xi, t)|^2 d\xi = 1. \quad (2) \]

部分系の物理量（演算子）\(\hat{A} \) の期待値:

\[A(t) \equiv \int \Phi^*(\xi, t) \hat{A} \Phi(\xi, t) d\xi = \sum_{\nu, \nu'} w_{\nu' \nu} \int \phi^*_\nu(\xi, t) \hat{A} \phi_\nu(\xi, t) d\xi. \quad (3) \]

- 外界と部分系との相互作用あり——混合系

\[a_\nu^* a_\nu \rightarrow w_{\nu' \nu} \equiv \langle a_\nu^* a_\nu \rangle \]

展開係数 \(a_\nu^* a_\nu \) を、外界との相互作用を考慮したある平均値 \(w_{\nu' \nu} \) で置き換える。

\(w_{\nu' \nu} \) の性質:

(a) \(w_{\nu' \nu} = \langle a_\nu^* a_\nu \rangle = \langle a_\nu^* a_\nu \rangle^* = w_{\nu \nu'}^* \) : エルミット

(b) \(w_{\nu' \nu} = \langle a_\nu^* a_\nu \rangle \) は正値行列

(c) \(\sum_\nu w_{\nu' \nu} = \langle \sum_\nu |a_\nu|^2 \rangle = 1 : \) 規格化

[2] 密度行列 \(\rho(\xi, \xi', t) \)

- 密度行列の定義式

\[\rho(\xi, \xi', t) \equiv \sum_{\nu, \nu'} w_{\nu' \nu} \phi_\nu(\xi, t) \phi^*_{\nu'}(\xi', t) \quad (4) \]
部分系の物理量（演算子）\(\hat{A} \) の期待値

\[
A(t) = \sum_{\nu\nu'} w_{\nu\nu'} \int \phi_{\nu'}^*(\xi, t) \hat{A} \phi_{\nu}(\xi, t) d\xi = \int \hat{A}_\xi \sum_{\nu\nu'} w_{\nu\nu'} \phi_{\nu}(\xi, t) \phi_{\nu'}^*(\xi', t) \bigg|_{\xi'=\xi} d\xi
= \int \hat{A}_\xi \rho(\xi, \xi', t) \bigg|_{\xi'=\xi} d\xi. \tag{5}
\]

密度行列の性質

(a) \(w_{\nu\nu} = w_{\nu\nu}' \quad \rightarrow \quad \rho(\xi, \xi', t) = \rho^*(\xi', \xi, t) \)：エルミート

(b) \(w_{\nu\nu} \) は正値行列 \(\rightarrow \rho(\xi, \xi') \) は正値行列

(c) \(\sum_{\nu} w_{\nu\nu} = 1 \quad \rightarrow \quad \int \rho(\xi, \xi) d\xi = \sum_{\nu\nu'} \int \phi_{\nu}(\xi, t) \phi_{\nu'}^*(\xi, t) d\xi = 1 \)：規格化

密度行列が満足する微分方程式

Schrödinger 方程式

\[
i\hbar \frac{\partial}{\partial t} \phi_{\nu}(\xi, t) = \hat{H} \phi_{\nu}(\xi, t) \] ここで、\(w_{\nu\nu} \) が時間依存性を持たないと仮定した。

平衡状態

\[
\phi_{\nu}(\xi, t) = \Psi_{\nu}(\xi)e^{-iE_{\nu}t/\hbar} \] エネルギーの固有状態を用いると便利。このとき、

\[
\rho(\xi, \xi', t) = \sum_{\nu} w_{\nu\nu} \Psi_{\nu}(\xi)\Psi_{\nu}^*(\xi')e^{-i(E_{\nu}-E_{\nu'})t/\hbar}. \tag{7}
\]

平衡状態の密度行列は時間依存しない（要請） \(\rightarrow \quad w_{\nu\nu} = w_{\nu}\delta_{\nu\nu} \)

\[
\rho(\xi, \xi') = \sum_{\nu} w_{\nu} \Psi_{\nu}(\xi)\Psi_{\nu}^*(\xi'). \tag{8}
\]

平衡状態の密度行列はエネルギー表示で対角的になる。すなわち、\(w_{\nu} = w(E_{\nu}) \)。

[3] 密度行列の具体形

相加性の仮定に基づき、平衡状態の \(w_{\nu} = w(E_{\nu}) \) を導出する。

部分系 1 と部分系 2 はほとんど独立（相互作用小さい）

\[w^{(1+2)} = w^{(1)}w^{(2)} \], すなわち

\[
\ln w^{(1+2)} = \ln w^{(1)} + \ln w^{(2)} \quad : \ln w \text{ は相加的。} \tag{9}
\]

同じ近似の範囲内で \(E^{(1+2)} = E^{(1)} + E^{(2)} \) が成立する。このことと、(9) 式および \(w = w(E) \) を考慮すると、\(\ln w(E) \) の関数形が次のように求まる。
(a) \(\ln w(E) = \alpha - \beta E \) : \(\ln w(E) \) は \(E \) の一次関数（\(\ln w \) と \(E \) の相加性より）

(b) \(\alpha^{(1+2)} = \alpha^{(1)} + \alpha^{(2)} \) : 定数部分は相加的

(c) \(\beta^{(1)} = \beta^{(2)} \equiv \beta \) : \(\beta^{(j)} \) は各部分系で同一

(d) \(1 = \sum_{\nu} w_{\nu} = \sum_{\nu} e^{\alpha - \beta E_{\nu}} \) \(\rightarrow \) \(\alpha = -\ln \sum_{\nu} e^{-\beta E_{\nu}} \equiv \beta F \)

以上より、\(w_{\nu} \) の具体形が以下のようになる。

\[
 w_{\nu} = e^{\beta(F-E_{\nu})}, \quad F \equiv -\frac{1}{\beta} \ln \sum_{\nu} e^{-\beta E_{\nu}}. \tag{10}
\]

ここで、エネルギーの低い状態のほうが出現確率が大きくなることを要請する。すると、

\[
 \beta \equiv \frac{1}{k_B T} > 0. \tag{11}
\]

（10）式の分布は、Gibbs によりカノニカル分布と名づけられた。Boltzmann 分布と形は同じであるが、相互作用のない系の一粒子エネルギー \(\varepsilon_k \) ではなく、相互作用も含めた系の全エネルギー \(E_{\nu} \) が指数の肩に現れていることに注意。

[4] 大正準集合 (grand canonical distribution)

以上の考察は、部分系 1 と部分系 2 との間に粒子のやり取りがある場合に容易に拡張できる。変更点は下記の通りである。

(a) \(\hat{H} \) \(\rightarrow \) \(\hat{H} - \mu \hat{N} \) (\(\mu \) は Langrange の未定乗数 = 化学ポテンシャル)

(b) \(w_{\nu} = w(E_{\nu}) \) \(\rightarrow \) \(w_{\nu N} = w(E_{\nu}, N) \)

(c) \(E \) と \(N \) に関する相加性の仮定 \(\rightarrow \) \(w_{\nu N} = e^{\beta(\Omega - E_{\nu} + \mu N)}, \quad \Omega \equiv -\frac{1}{\beta} \ln \sum_{\nu N} e^{-\beta(E_{\nu} - \mu N)}. \)