§9 摺動論

・摺動論の概要

(a) $\hat{H} = \hat{H}_0 + \hat{V}$：全ハミルトニアン

(b) $\hat{H}_0 \varphi_m(r) = \varepsilon_m \varphi_m(r)$：固有値と固有ベクトルが解っている。

\[\langle \varphi_{m'} | \varphi_m \rangle \equiv \int \varphi^*_{m'}(r) \varphi_m(r) dr = \delta_{m'm} : \text{規格直交系} \quad (1) \]

\[\sum_m \varphi_m(r) \varphi^*_{m'}(r') = \delta(r-r') : \text{完全系} \quad (2) \]

(c) \hat{V} は \hat{H}_0 に対する小さい補正と考えることができる。

\[\downarrow \]

\hat{H} を \hat{H}_0 のまわりで \hat{V} について展開し、固有値と固有ベクトルを近似的に求める。

・行列形式

\hat{V} が時間に依存しない場合、この問題は、量子力学の行列形式で次のように書くことができる。

\[(\hat{H}_0 + \hat{V}) \psi(r) = E \psi(r) \quad : \hat{H} \text{に対する固有値問題} \quad (3) \]

\[\psi(r) = \sum_{m'} \varphi_{m'}(r)c_{m'} \quad : \text{完全系での展開} \quad (4) \]

(4) 式を (3) 式に代入して、$\hat{H}_0 \varphi_{m'}(r) = \varepsilon_{m'} \varphi_{m'}(r)$ を用いる。

\[\sum_{m'} \varepsilon_{m'} \varphi_{m'}(r)c_{m'} + \sum_{m'} \hat{V} \varphi_{m'}(r)c_{m'} = E \sum_{m'} \varphi_{m'}(r)c_{m'} \quad (5) \]

左から $\varphi^*_{m}(r)$ をかけて r について積分し、規格直交性 (1) を用いると、次式が得られる。

\[\varepsilon_m c_m + \sum_{m'} V_{mm'}^{(1)} c_{m'} = E c_m \quad V_{mm'}^{(1)} = \int \varphi^*_{m}(r) \hat{V} \varphi_{m'}(r) dr \quad (6) \]

すなわち、行列 $(\varepsilon_m \delta_{mm'} + V_{mm'}^{(1)})$ の固有値問題。

(6) 式は、次のようにも書ける。

\[(E - \varepsilon_m)c_m = \sum_{m'} V_{mm'}^{(1)} c_{m'} \quad (7) \]
9.1 時間に擬らない摂動論 — I. 縮退のない場合

- 条件
 (a) \hat{V}：時間依存せず; \hat{H}_0 に較べて一次の微小量
 (b) ε_m に縮退なし

- 摂動展開

(7) 式で、n 番目の固有値 E_n を求める考えを同じ、この固有値と固有ベクトル c_m を、以下のように $\hat{V}^{(1)}$ の次数について形式的に展開

$$
E_n = \varepsilon_n + E_n^{(1)} + E_n^{(2)} + \cdots
$$ \hspace{1cm} (8)

$$
c_m = c_m^{(0)} + c_m^{(1)} + c_m^{(2)} + \cdots
$$ \hspace{1cm} (9)

(8) 式と (9) 式を (7) 式に代入し、次数の等しい項を集めめる。

0次

$$
(\varepsilon_n - \varepsilon_m)c_m^{(0)} = 0
$$ \hspace{1cm} (10)

1次

$$
(\varepsilon_n - \varepsilon_m)c_m^{(1)} + E_n^{(1)}c_m^{(0)} = \sum_{m'} V_{mnm'}^{(1)}c_m^{(0)}
$$ \hspace{1cm} (11)

2次

$$
(\varepsilon_n - \varepsilon_m)c_m^{(2)} + E_n^{(1)}c_m^{(1)} + E_n^{(2)}c_m^{(0)} = \sum_{m'} V_{mnm'}^{(1)}c_m^{(1)}
$$ \hspace{1cm} (12)

- 0次の解:

(10) 式より、$c_m^{(0)} \propto \delta_{mn}$ が解る。

以下、この比例係数を 1 と置く (0 次の波動関数の規格化）

$$
c_m^{(0)} = \delta_{mn}
$$ \hspace{1cm} (13)

固有関数

$$
\psi_n^{(0)}(r) = \sum_m \varphi_m(r)c_m^{(0)} = \varphi_n(r)
$$ \hspace{1cm} (14)

- 1次の解:

(13) 式を (11) 式に代入。

$$
(\varepsilon_n - \varepsilon_m)c_m^{(1)} + E_n^{(1)}\delta_{mn} = V_{mn}^{(1)}
$$ \hspace{1cm} (15)

$m = n$ の場合。

$$
E_n^{(1)} = V_n^{(1)}
$$ \hspace{1cm} (16)

$m \neq n$ の場合。

$$
c_m^{(1)} = \frac{V_{mn}^{(1)}}{\varepsilon_n - \varepsilon_m}
$$ \hspace{1cm} (17)
固有関数

\[
\psi_n^{(1)}(\mathbf{r}) = \sum_m c_m^{(1)} \varphi_m(\mathbf{r}) = \sum_{m \neq n} \frac{V_{mn}^{(1)}}{\varepsilon_n - \varepsilon_m} \varphi_m(\mathbf{r}) + c_n^{(1)} \varphi_n(\mathbf{r})
\] (18)

補）未定の係数 \(c_n^{(1)} \) について

(a) 一次近似の範囲での波動関数 ← (14) 式と (18) 式より

\[
\psi_n(\mathbf{r}) \approx \psi_n^{(0)}(\mathbf{r}) + \psi_n^{(1)}(\mathbf{r}) = \varphi_n(\mathbf{r}) + \psi_n^{(1)}(\mathbf{r})
\] (19)

(b) 波動関数の規格化を要請 ← (1) 式と (18) 式を用いて

\[
1 = \langle \psi_n | \psi_n \rangle \approx \langle \varphi_n | \varphi_n \rangle + \langle \psi_n^{(1)} | \varphi_n \rangle + \langle \varphi_n | \psi_n^{(1)} \rangle = 1 + c_n^{(1)} + c_n^{(1)*}
\]

すなわち \(c_n^{(1)} + c_n^{(1)*} = 0 \quad \leftrightarrow \quad c_n^{(1)} = i\chi_n : 純虚数 \)

(\(\chi_n \) は実数で一次のオーダーの微小量)

(c) 波動関数 \(\psi(\mathbf{r}) \) の位相を取り替える

\[
\tilde{\psi}_n(\mathbf{r}) \equiv \psi_n(\mathbf{r})e^{-i\chi_n} \approx (1 - i\chi_n)\psi_n^{(0)}(\mathbf{r}) + \psi_n^{(1)}(\mathbf{r})
\]

\[
= \psi_n^{(0)}(\mathbf{r}) + \sum_{m \neq n} \frac{V_{mn}^{(1)}}{\varepsilon_n - \varepsilon_m} \varphi_m(\mathbf{r})
\] (20)

\[\downarrow\]

\(c_n^{(1)} \) を位相の取り替えにより消すことができた！→ 最初からゼロと置いて OK

- 2 次の解：

(13)、(16)、(17) 式を、(12) 式に代入。

\[
(\varepsilon_n - \varepsilon_m)c_m^{(2)} + E_n^{(1)}c_m^{(1)} + E_n^{(2)}\delta_{mn} = \sum_{m'(\neq n)} V_{mm'}^{(1)} \frac{V_{mn}^{(1)}}{\varepsilon_n - \varepsilon_m} + V_{mn}^{(1)}c_n^{(1)}
\] (21)

(21) 式で \(m = n \) と置き、\(E_n^{(1)} = V_{nn}^{(1)} \) と \(V_{mm'}^{(1)} = V_{nm'}^{(1)*} \) を考慮すると、次式が得られる。

\[
E_n^{(2)} = \sum_{m'(\neq n)} \frac{|V_{nm'}^{(1)}|^2}{\varepsilon_n - \varepsilon_m'}
\] (22)

(21) 式で \(m \neq n \) の場合

\[
c_m^{(2)} = \sum_{m'(\neq n)} \frac{V_{mm'}^{(1)}V_{mn}^{(1)}}{(\varepsilon_n - \varepsilon_m)(\varepsilon_n - \varepsilon_m')} - \frac{V_{mn}^{(1)}V_{nm}^{(1)}^{*}}{(\varepsilon_n - \varepsilon_m)^2} + \frac{V_{mn}^{(1)}c_n^{(1)}}{\varepsilon_n - \varepsilon_m}
\] (23)

右辺最後の項は 0 と置いて構わない (\(c_n^{(1)} \rightarrow 0 \))
2次摂動 — 何を行ったのか？

(a) 2×2 Hermite 行列の固有値問題

$$
\begin{bmatrix}
\varepsilon_0 & V_{01} \\
V_{01}^* & \varepsilon_1
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1
\end{bmatrix}
= E
\begin{bmatrix}
c_0 \\
c_1
\end{bmatrix}
\quad (\varepsilon_0 < \varepsilon_1)
$$

(b) 固有値

$$
0 = (\varepsilon_0 - E)(\varepsilon_1 - E) - |V_{01}|^2 = E^2 - (\varepsilon_0 + \varepsilon_1)E + \varepsilon_0 \varepsilon_1 - |V_{01}|^2
$$

従って、E は次のように求まる。

$$
E = \frac{\varepsilon_1 + \varepsilon_0 \mp \sqrt{[(\varepsilon_1 - \varepsilon_0)^2 + 4|V_{01}|^2]^{1/2}}}{2}
$$

$$
= \frac{1}{2}(\varepsilon_1 + \varepsilon_0) \mp \frac{1}{2}(\varepsilon_1 - \varepsilon_0) \left[1 + \frac{4|V_{01}|^2}{(\varepsilon_1 - \varepsilon_0)^2} \right]^{1/2}
$$

$$
\approx \frac{1}{2}(\varepsilon_1 + \varepsilon_0) \mp \frac{1}{2} \left(\varepsilon_1 - \varepsilon_0 + \frac{2|V_{01}|^2}{\varepsilon_1 - \varepsilon_0} \cdots \right)
$$

$$
= \begin{cases}
\varepsilon_0 + \frac{|V_{01}|^2}{\varepsilon_1 - \varepsilon_0} \\
\varepsilon_1 - \varepsilon_0 \\
\varepsilon_1 + \frac{|V_{01}|^2}{\varepsilon_1 - \varepsilon_0}
\end{cases}
$$

|V_{01}|^2/(\varepsilon_0 - \varepsilon_1)^2 についての展開 — エネルギーの2次摂動公式

摂動展開が良い近似 $\leftrightarrow \frac{|V_{nm}|^2}{(\varepsilon_n - \varepsilon_m)^2} \ll 1$ が必要

9.2 時間に持らない摂動論 — II. 縮退のある場合

条件

(a) \hat{V} : 時間依存せず, \hat{H}_0 に較べて一次の微小量

(b) 固有値 ε_n が d 重に縮退 — 対応する固有関数 : $\varphi_{n1}(r), \cdots, \varphi_{nd}(r)$

9.1 の摂動論は使えず — (26) 式が成立せず； \hat{V} により、縮退が解ける可能性

$$
\begin{bmatrix}
\varepsilon_n + V_{n1:n1}^{(1)} & V_{n1:n2}^{(1)} & \cdots & V_{n1:nd}^{(1)} \\
V_{n2:n1}^{(1)} & \varepsilon_n + V_{n2:n2}^{(1)} & \cdots & V_{n2:nd}^{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
V_{nd:n1}^{(1)} & V_{nd:n2}^{(1)} & \cdots & \varepsilon_n + V_{nd:nd}^{(1)}
\end{bmatrix}
$$
・0次摂動

第0近似の波動関数

\[\psi^{(0)}_{na}(r) = \sum_{a=1}^{d} \varphi_{na}(r)c^{(0)}_{na} \] (27)

行列形式 — (7) 式で \(m = na, m' = nb \), \(E = \varepsilon_n + E^{(1)}_{na} \) と置いて

\[\sum_b V^{(1)}_{na, nb}c^{(0)}_{nb} = E^{(1)}_{na}c^{(0)}_{na} \] (28)

この固有値問題を解いて、固有値 \(E^{(1)}_{na} \) と固有ベクトル \(c^{(0)}_{na} \) を求める。

・高次の補正

\(\varepsilon_n \) に属する基底関数を \(\{ \varphi_{na}(r) \}_{a=1}^{d} \) から \(\{ \psi^{(0)}_{na}(r) \}_{a=1}^{d} \) に取り替えて摂動展開を行う。

9.3 相互作用表示

・時間に依存した Schrödinger 方程式 — に 依存性を省略

\[i\hbar \frac{\partial \psi(t)}{\partial t} = [\hat{H}_0 + \hat{V}(t)] \psi(t), \quad \hat{V}(t) : 摂動とみなせる。 \] (29)

・相互作用表示 — \(\psi(t) = \exp(-i\hat{H}_0 t/\hbar)\phi(t) \)

・相互作用表示の Schrödinger 方程式

\(\psi(t) = e^{-i\hat{H}_0 t/\hbar}\phi(t) \) を (29) 式に代入

\[\hat{H}_0 e^{-i\hat{H}_0 t/\hbar}\phi(t) + e^{-i\hat{H}_0 t/\hbar}i\hbar \frac{\partial \phi(t)}{\partial t} = [\hat{H}_0 + \hat{V}(t)] e^{-i\hat{H}_0 t/\hbar}\phi(t) \]

（\(\hat{H}_0 \) は演算子 = 行列であることに注意 — 異なる演算子は一般に非可換）

共通因子 \(\hat{H}_0 e^{-i\hat{H}_0 t/\hbar}\phi(t) \) を落とした後、左から \(e^{i\hat{H}_0 t/\hbar} \) を作用させる。

\[e^{i\hat{H}_0 t/\hbar} e^{-i\hat{H}_0 t/\hbar} i\hbar \frac{\partial \phi(t)}{\partial t} = e^{i\hat{H}_0 t/\hbar} \hat{V}(t) e^{-i\hat{H}_0 t/\hbar}\phi(t) \]

すなわち、

\[i\hbar \frac{\partial \phi(t)}{\partial t} = e^{i\hat{H}_0 t/\hbar} \hat{V}(t) e^{-i\hat{H}_0 t/\hbar}\phi(t) \]

まとめ

\[i\hbar \frac{\partial \phi(t)}{\partial t} = \hat{V}_1(t)\phi(t), \]

\(\hat{V}_1(t) \equiv e^{i\hat{H}_0 t/\hbar} \hat{V}(t) e^{-i\hat{H}_0 t/\hbar} . \) (31)
\(\phi(t) \) に対する積分方程式

(30) 式を \(t_0 \) から \(t \) まで積分

\[
i\hbar [\phi(t) - \phi(t_0)] = \int_{t_0}^{t} \dot{V}_1(t') \phi(t') dt'
\]

\(t < t_0 \) で \(\dot{V}(t) = 0 \) かつ \(\phi(t) = \varphi_n \) (ただし \(\varphi_n \) は \(\hat{H}_0 \) の固有関数) であったとすると

\[
\phi(t) = \varphi_n - \frac{i}{\hbar} \int_{t_0}^{t} \dot{V}_1(t') \phi(t') dt' \quad : \phi(t) \text{ に対する積分方程式 (32)}
\]

\(\phi(t) \) に対する摺動展開の式

(32) 式の右辺の \(\phi(t) \) に左辺の表式を繰り返し代入

\[
\phi(t) = \varphi_n - \frac{i}{\hbar} \int_{t_0}^{t} dt_1 \dot{V}_1(t_1) \left[\varphi_n - \frac{i}{\hbar} \int_{t_0}^{t_1} dt_2 \dot{V}_1(t_2) \phi(t_2) \right]
\]

\[
= \varphi_n - \frac{i}{\hbar} \int_{t_0}^{t} dt_1 \dot{V}_1(t_1) \varphi_n + \left(- \frac{i}{\hbar} \right)^2 \int_{t_0}^{t} dt_1 \int_{t_0}^{t_1} dt_2 \dot{V}_1(t_1) \dot{V}_1(t_2) \varphi_n + \cdots
\]

\[
= \varphi_n + \sum_{\ell=1}^{\infty} \left(- \frac{i}{\hbar} \right)^\ell \int_{t_0}^{t} dt_1 \int_{t_0}^{t_1} dt_2 \cdots \int_{t_0}^{t_{\ell-1}} dt_{\ell} \dot{V}_1(t_1) \dot{V}_1(t_2) \cdots \dot{V}_1(t_{\ell}) \varphi_n. (33)
\]

9.4 時間に依存した摺動論 — 一次摺動

一次摺動による波動関数の変化

\[
\phi(r, t) = \varphi_n(r) - \frac{i}{\hbar} \int_{t_0}^{t} dt_1 \dot{V}_1(t_1) \varphi_n(r), \quad \dot{V}_1(t_1) \equiv e^{i\hat{H}_0 t_1/\hbar} \dot{V}(t_1) e^{-i\hat{H}_0 t_1/\hbar}. (34)
\]

\(\phi(t) \) を \(\hat{H}_0 \) の固有関数で展開 — \(t < t_0 \) では \(\varphi_n \) 状態であったことを考慮

\[
\phi(r, t) = \varphi_n(r) + \sum_{m'} c_{m'}^{(1)}(t) \varphi_{m'}(r). (35)
\]

(35) 式を (34) に代入し、左から \(\varphi_{m'}(r) \) をかけて \(r \) 積分を実行

\[
\sum_{m'} \langle \varphi_m | \varphi_{m'} \rangle c_{m'}^{(1)}(t) = -\frac{i}{\hbar} \int_{t_0}^{t} dt_1 \langle \varphi_m | e^{i\hat{H}_0 t_1/\hbar} \dot{V}(t_1) e^{-i\hat{H}_0 t_1/\hbar} | \varphi_n \rangle
\]

ここで、\(\langle \varphi_m | \varphi_{m'} \rangle = \delta_{mm'} \), \(\langle \varphi_m | e^{i\hat{H}_0 t_1/\hbar} \dot{V}(t_1) e^{-i\hat{H}_0 t_1/\hbar} | \varphi_n \rangle = | \varphi_n \rangle e^{-i\varepsilon_{m't} t_1/\hbar} \) を考慮すると、以下のようなになる。

\[
c_{m}^{(1)}(t) = -\frac{i}{\hbar} \int_{t_0}^{t} dt_1 e^{i(\varepsilon_m - \varepsilon_n) t_1/\hbar} \langle \varphi_m | \dot{V}(t_1) | \varphi_n \rangle dt_1.
\]

まとめ

\[
c_{m}^{(1)}(t) = -\frac{i}{\hbar} \int_{t_0}^{t} e^{i\omega_{mn} t_1} V_{mn}^{(1)}(t_1) dt_1, (36)
\]

\[
\omega_{mn} \equiv \frac{\varepsilon_m - \varepsilon_n}{\hbar}, \quad V_{mn}^{(1)}(t_1) \equiv \langle \varphi_m | \dot{V}(t_1) | \varphi_n \rangle. (37)
\]
周期的摺動

摺動の演算子 (Hermite 演算子)

\[\hat{V}(t) = \hat{F} e^{-i \omega t} + \hat{F}^\dagger e^{i \omega t}. \] (38)

考えている状況の例 — 瑞い X 線を物質に当てて、光電効果を観測する。
(a) 物質には瑞い X 線が定常的に照射されている。
(b) 物質の応答も定常的（電子が定常的に飛び出して来ている）。

(36) 式と (37) 式に (38) 式を代入し、\(t_0 = 0 \) において積分を実行。

\[
c_m^{(1)} = -\frac{i}{\hbar} \int_0^t e^{i(\omega_{mn} - \omega)t_1} dt_1 \langle \varphi_n | \hat{F} | \varphi_m \rangle - \frac{i}{\hbar} \int_0^t e^{i(\omega_{mn} + \omega)t_1} dt_1 \langle \varphi_m | \hat{F}^\dagger | \varphi_n \rangle
\]

\[
= -\frac{i}{\hbar} e^{i(\omega_{mn} - \omega)t} \left| \frac{F^{(1)}_{mn}}{i(\omega_{mn} - \omega)} \right|_0^t - \frac{i}{\hbar} e^{i(\omega_{mn} + \omega)t} \left| \frac{F^{(1)*}_{mn}}{i(\omega_{mn} + \omega)} \right|_0^t
\]

\[
= \frac{1 - e^{i(\omega_{mn} - \omega)t}}{\hbar(\omega_{mn} - \omega)} F^{(1)}_{mn} + \frac{1 - e^{i(\omega_{mn} + \omega)t}}{\hbar(\omega_{mn} + \omega)} F^{(1)*}_{mn}
\]

まとめ

\[
c_m^{(1)} = \frac{1 - e^{i(\omega_{mn} - \omega)t}}{\hbar(\omega_{mn} - \omega)} F^{(1)}_{mn} + \frac{1 - e^{i(\omega_{mn} + \omega)t}}{\hbar(\omega_{mn} + \omega)} F^{(1)*}_{mn}
\] (39)

\[
F^{(1)*}_{mn} = \langle \varphi_n | \hat{F} | \varphi_m \rangle = \langle \varphi_n | \hat{F}^\dagger | \varphi_m \rangle^* \] (40)

\[\hbar \omega \approx \pm (\epsilon_m - \epsilon_n) \] を満たす角振動数 \(\omega \) に対して大きな応答

9.5 周期的摺動による離散状態 \(\epsilon_n \) から連続状態 \(\epsilon_m \) への遷移

\[\hbar \omega = \epsilon_m - \epsilon_n \] を満たす \(m \) が連続的に分布 → (39) の第二項は第一項に比べて無視できる

例：金属 Al の 2p 軌道からの光電子 \((n = 2p) \rightarrow \epsilon_m \) は連続スペクトルの平面波 \((m = k) \)

状態 \(n \) から \(m(\neq n) \) への遷移確率 \(P(n \rightarrow m) = |c_m^{(1)}|^2 \)

\[
P(n \rightarrow m) = |F_{mn}|^2 \left[\frac{1 - \cos(\omega_{mn} - \omega)t}{\hbar^2(\omega_{mn} - \omega)^2} \right] = \frac{|F_{mn}|^2}{\hbar^2} \left[\frac{\sin(\omega_{mn} - \omega)t}{2} \right]^2 \] (41)

ここで、\(f(x) \equiv \left(\frac{\sin xt}{x} \right)^2 \) は次のような性質を持つ。

\[f(x) \sim 0 \] (42)

\[
\int_{-\infty}^{\infty} \left(\frac{\sin xt}{x} \right)^2 dx = t \int_{-\infty}^{\infty} \left(\frac{\sin y}{y} \right)^2 dy = t \pi
\] (43)

ゆえに、\(f(x) \equiv \left(\frac{\sin xt}{x} \right)^2 \xrightarrow{t \to \infty} \pi t \delta(x) \)。
$$\frac{\partial}{\partial t} \left(\psi \right) = \frac{1}{2} \left(\mathbf{r} \cdot \mathbf{j} + \mathbf{j} \cdot \mathbf{r} \right) \psi$$