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In the special theory of relativity, an event in a four-dimensional space-time 

continuum is assigned three space co-ordinates and a time co-ordinate. In order to 

assign a time co-ordinate to an event, we fix the time of the event by means of clock. 

In fact, the fixing of time of an event by means of clock is based on the hypothesis 

that a physical process which constitutes a cycle of clock always fills the same 

length of time. This hypothesis can be stated more generally as follows, since a 

clock is a cyclic physical system: a physical process always fills the same length of 

time. Here, we show that this hypothesis can be abandoned from the special theory 

of relativity, and that the abandonment of the hypothesis retains the form of the 

theory. The abandonment of the hypothesis leads to a modification of the 

interpretation of the form of the special theory of relativity: Abusively speaking, 

the abandonment of the hypothesis removes the concept of time as a physical entity 

from the theory.  

The hypothesis is conspicuously stated in Hermann Weyl’s treatise1 . We cite here 

his expression. “The empirical content which fills the length of Time AB can in itself be 

put into any other time without being in any way different from what it is. The length of 

time which it would then occupy is equal to the distance AB.” This statement is a 

hypothesis. In fact, we have no means of proving the truth of this statement. 

In the first half of the paper, we will show that the hypothesis that a physical 

process always fills the same length of time can be abandoned from the special theory 
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of relativity. In the second half of the paper, we will show that the abandonment of this 

hypothesis retains the form of the theory. Throughout this paper, the concept of 

simultaneity is based on the definition which is given by Einstein. We consider only 

inertial systems and bodies which are in uniform straight motion relatively to inertial 

systems. We will call the observer which is placed at rest in the inertial system  at the 

origin simply the inertial observer 

Φ

Φ . 

Our first task is to describe the motion of a body, relating to the motion of another 

body. Let Φ  be an arbitrary inertial observer. Let i  be an arbitrary body which is in 

uniform straight motion relatively to Φ . Let us denote the distance from the inertial 

observer  to the body i  by [m]. Then we describe Φ iΦ iΦ   as a function of [s] as 

follows: 

t

iΦ )(tiφ= , where  denotes the time parameter of t Φ . Let us assume that the 

body i  satisfies the condition 0)0( =iφ )(∗L  which means that at the time  the 

inertial observer  and the body i  coincide. Then the mapping 

0=t

Φ

ii t Φ∞→)∞ a);,0[[: ,0φ  is a bijection, that is, the mapping iφ  is an one-to-one 

correspondence. Let  be also an arbitrary body which is in uniform straight motion 

relatively to . We assume that the body  also satisfies the condition (*). Then we 

have 

j

Φ j

0)0( =jφ . Thus the mapping jj t Φ∞→∞ a);,0[),0[:φ  is also bijection. Now, 

under these assumptions, we’d like to describe the quantity iΦ  as a function of the 

quantity . Remember that we have the relations jΦ )(tii φ=Φ , )(tjj φ=Φ . Since jφ  

is a bijection, jφ  has the inverse mapping . Thus we have the equation . 

Introduction of this equation into 

1−
jφ tjj =Φ− )(1φ

)(tii φ=Φ  gives . Therefore we 

obtain the equation . This equation enables us to describe  as a 

function of . Moreover, since this equation expresses how the body  changes  

with , this equation enables us to describe the motion of  relating to the motion of 

. For simplicity, throughout this paper we assume that any body which is in uniform 

straight motion relatively to the inertial observer 

))(( 1
jjii Φ=Φ −φφ

))(( 1
jjii Φ=Φ −φφ o iΦ

jΦ i iΦ

jΦ i

j

Φ  satisfies the condition (*). Note 
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that then the speed of  relatively to i Φ  can be written as 
dt

d iΦ
[m/s], where  denotes 

an arbitrary body which is in uniform straight motion relatively to 

i

Φ . 

Our next task is to define the concept of “generalized speed”, which plays a crucial 

role in the argument below. In the above paragraph, we saw that we can describe  as 

a function of  by the equation . Now we define the quantity  

by 

iΦ

jΦ ))(( 1
jjii = ΦΦ −φφ o ijV

j

i
ij

j

V
∆Φ
∆Φ

=
→∆Φ 0

lim  
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆Φ

Φ∆
=

−

→∆Φ
j

jji

j

))((
lim

1

0

φφ o
. This limit exists. Indeed, since the 

body i  is in uniform straight motion relatively to Φ , the bijection iφ  is a 

diffeomorphism, that is, both 1C iφ  and  are maps. Similarly 1−
i

φ 1C jφ  is also a 

diffeomorphism. Then the inverse mapping  is also a diffeomorphism. Since 

both 

1C 1−
jφ

1C

iφ  and  are diffeomorphisms, the composite mapping  is also a 

diffeomorphism. Thus we see that the above limit exists. Therefore  can be 

written as 

1−
jφ

1C 1−
ji φφ o

1C ijV

j

i
ij d

d
V

Φ
Φ

= . We define the following word. 

Definition. Let ,  be two arbitrary bodies which are in uniform straight motion 

relatively to the inertial observer 

i j

Φ . Then we will call the quantity  “generalized 

speed” in order to make a distinction between  and speed in the usual sense.  

ijV

ijV

In this paper we call speed in the usual sense simply speed. Whereas speed is a ratio 

between the distance that a body moves and the time that the body takes to move, 

generalized speed is a ratio between the distance that a body moves and the distance that 

another body moves. Thus  is a dimensionless quantity. Let us define the following 

words.  

ijV
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Definition. Let us consider the generalized speed 
j

i
ij d

d
V

Φ
Φ

= . Then we will call the body 

 the “criterion body” of the generalized speed  , and we will call the body i  the 

“object body” of the generalized speed .  

j ijV

ijV

Generalized speed is a quantity which depends on an inertial observer, a criterion body 

and an object body. In particular, a generalized speed of i  relatively to  depends on 

the choice of criterion body. 

Φ

Let us record some elementary properties of generalized speed. We have the following 

natural proposition.  

Proposition. Let [m/s] be the speed of i  relatively to iv Φ  , [m/s] the speed of  

relatively to . Then, it follows that 

jv j

Φ
j

i

j

i
ij v

v
d
d

V =
Φ
Φ

=  [dimensionless]. 

Proof. By the assumption, we have the relations tvt iii ==Φ )(φ  , tvt jjj ==Φ )(φ . 

(Remember that we assume that 0)0( =iφ , 0)0( =jφ .) Thus it follows that 

j

j
i

j

j
ijjiii v

v
v

t
Φ
⋅=

Φ
=Φ==Φ − )())(()( 1 φφφφ . Therefore we obtain 

j

i

jj

j
i

j

i
ij v

v
d

d
v

v
d
d

V =
Φ

⋅
Φ
⋅=

Φ
Φ

= )( . 

In particular, we directly obtain the following corollary. 

Corollary. For any i , we have 1=iiV  [dimensionless]. 

If we visualize the equation in the above corollary in the xy -plane whose each axis 

corresponds to the quantity , the straight line that represents the equation makes a 

45-degree angle with the axes. This graph represents nothing else than the trivial 

iΦ
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statement that while the body i  moves [m] relatively to a Φ , the body  moves [m] 

relatively to . We note the following:  

i a

Φ

Remark. If the inertial observer Φ  chooses the body  as a criterion body of 

generalized speed, then  can’t consider any substantial generalized speed of ; If 

j

Φ j Φ  

wishes to consider a generalized speed of , j Φ  can consider only . However, this 

generalized speed is senseless as we saw in the corollary. 

jjV

Now, the inertial observer  may regard a generalized speed Φ
j

i
ij d

d
V

Φ
Φ

=  as a 

speed 
dt

d
v iΦ
= . Indeed, the inertial observer Φ  can choose a criterion body in order 

that for any i , the generalized speed of i  be numerically identical with the speed of i . 

Imagine, for example, an ideal body  which is in uniform straight motion with speed 

1[m/s] relatively to 

j

Φ . Let  choose  as a criterion body. Then, for all i , the 

generalized speed of  is numerically identical with the speed of i . Indeed, if [m/s] is 

the speed of i  relatively to , then the generalized speed of i  

Φ j

i v

Φ
j

i
ij d

d
Φ
Φ

=V  is given by 

vv
=

1d
d

V
j

i
ij =

Φ
Φ

=  [dimensionless]. This directly follows from proposition. Thus the 

generalized speed of  i
j

i
ij d

d
V  is numerically identical with the speed of i  

Φ
Φ

=
dt
Φd

v i= , 

where i  denotes an arbitrary body which is in uniform straight motion relatively to . 

Therefore we see that the inertial observer 

Φ

Φ  may regard generalized speed whose 

criterion body is  as speed. A natural question arising from this consideration is 

whether the equivalence between 

j

j

i

d
d
Φ
Φ

 and 
dt

d iΦ
 indicates the equivalence as a 

parameter between jΦ  and t . We conclude that the parameter  is nothing but the 

parameter Φ . In other words, we entitle the inertial observer 

t

j Φ  to regard the passage 

of time as the motion of a criterion body. Then time, which is measured by clock, is 

discarded as a physical entity, and then the hypothesis that a physical process always 

fills the same length of time becomes superfluous. As a consequence of the 
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abandonment of the hypothesis, we are forced to discard the concept of speed, which 

contains the concept of time. The concept of generalized speed will replace the concept 

of speed. We note that the concept of simultaneity and clock as the apparatus to 

determine whether two arbitrary events took place simultaneously or not are still needed. 

From now on, we will develop a similar argument considering two inertial 

observers in order to show that the abandonment of the hypothesis retains the form of 

the special theory of relativity. Let Φ , Ψ  be two arbitrary inertial observers. We denote 

the time parameter of Φ  by [s], and we denote the time parameter of  by [s]. 

Throughout this paper, for simplicity, we assume that the inertial observer Ψ  coincides 

with the inertial observer  at the time 

Φt Ψ Ψt

Φ 0== ΨΦ tt . Then we have 0)0( =Ψφ , 

0)0( =Φψ . Thus we also have 0)0( =iψ , where  denotes an arbitrary body which is in 

uniform straight motion relatively to 

i

Φ . (remember that we assume 0)0( =iφ ) Note 

that then the speed of  relatively to i Φ  can be written as 
Φ

Φ
dt
d i [m/s], and that then the 

speed of i  relatively to  can be written as Ψ
Ψ

Ψ
dt
d i [m/s], where i  denotes an arbitrary 

body which is in uniform straight motion relatively to Φ . For example, the speed of Ψ  

relatively to  can be written as Φ
Φ

ΨΦ
dt

d
, and the speed of Φ  relatively to  can be 

written as 

Ψ

Ψ

ΦΨ
dt
d

. 

We first give our attention to a special criterion body. We define the following word. 

Definition. We will call a criterion body of generalized speed which satisfies the 

following condition (**) “absolute criterion”. 

(**): If both  and choose an absolute criterion as a criterion body, then the 

generalized speed of  relatively to 

Φ Ψ

Φ Ψ  is numerically identical with the generalized 
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speed of  relatively to Φ . In other words, if Ψ α  is an absolute criterion, it follows that 

αα Φ
Φ

=
Ψ
Ψ ΨΦ

d
d

d
d

.  

We obtain the following theorem. 

Theorem1. A ray of light is an absolute criterion. 

Proof. We denote a ray of light by α . We assume that α  satisfies the condition (*). 

Then we have 0)0( =αφ . Further, it also follows that 0)0( =αψ , for we have 

0)0( =Ψφ . In other words, we assume that at the time 0== ΨΦ tt  the inertial observer 

, the inertial observer  and the emitting body of the ray of light Φ Ψ α  coincide, and 

that α  is emitted at the time 0== ΨΦ tt . We now assume that both Φ  and  choose Ψ

α  as a criterion body of generalized speed. Let [m/s] be the speed of  relatively to 

. Then [m/s] is also the speed of 

v Ψ

Φ v Φ  relatively to Ψ . Under these assumptions, the 

generalized speed of  relatively to Ψ Φ  
α

α Φ
Φ

= Ψ
Ψ d

dV  is given by 
c
v

d
dV =
Φ
Φ

= Ψ
Ψ

α
α  

[dimensionless], where [m/s] denotes the speed of light. To prove the theorem, we 

must show that the generalized speed of 

c

Φ  relatively to Ψ  
α

α Ψ
Ψ

= Φ
Φ d

dW  (here we set 

α
α Ψ

Ψ
= Φ

Φ d
dW ) is also given by 

c
v

d
dW  [dimensionless]. To prove this, we 

must show that  moves [m] relatively to 

==Φα Ψ
ΨΦ

α

Φ v Ψ  while α  moves c [m] relatively to . 

Thus we now assume that 

Ψ

α  moves [m] relatively to c Ψ . Then as judged from , the 

time 1[s] elapses, because [m/s] is the speed of 

Ψ

c α  relatively to Ψ . Since  is in 

uniform straight motion with speed [m/s] relatively to 

Φ

v Ψ , Φ  moves [m] relatively 

to  in this time interval 1[s]. Therefore the generalized speed of 

v

Ψ Φ  relatively to Ψ  
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α
α Ψ

Ψ
= Φ

Φ d
dW  is given by 

c
v

d
dW =
Ψ
Ψ

= Φ
Φ

α
α  [dimensionless]. Thus we see that the ray of 

light α  is an absolute criterion, for we now have 
c
v

d
d

d
d

=
Φ
Φ

=
Ψ
Ψ ΨΦ

αα

. 

Since light is the only object whose speed is independent of the states of motion of the 

observers, we also see that only light can be absolute criterion. Thus we obtain the 

following theorem. 

Theorem2. In order that a criterion body be an absolute criterion it is necessary and 

sufficient that the criterion body is a ray of light. 

Absolute criterion is criterion body common to Φ  and Ψ . Let us define the word that 

specifies an observer of absolute criterion. 

Definition. Let a ray of light α  be an absolute criterion. Then we will call the absolute 

criterion α  that is observed by the inertial observer Φ  the “proper criterion of ”, and 

we will call the absolute criterion 

Φ

α  that is observed by the inertial observer  the 

“proper criterion of 

Ψ

Ψ ”. We denote the proper criterion of Φ  by ),( Φα , and we denote 

the proper criterion of  by (Ψ Ψ,α ). 

When we don’t specify an observer of the absolute criterion α , we will call the absolute 

criterion α  simply the absolute criterion α  and denote it by simply α . 

Our task is now to show that generalized speed whose criterion body is absolute 

criterion is equivalent to speed for Φ  and for Ψ . We have the following theorem. 

Theorem3. Let a ray of light α  be an absolute criterion. Then, for the inertial observer 

 and for the inertial observer Ψ , generalized speed whose criterion body is Φ α  is 

equivalent to speed. 

Let us formulate the above assertion mathematically. It can be stated as follows: 
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The concept 
α

α

Φ
ΦΦ

d
d i )(

 (generalized speed) is equivalent to the concept 
Φ

ΦΦ
dt

td i )(
 

(speed), and the concept 
α

α

Ψ
ΨΨ

d
d i )(

 (generalized speed) is equivalent to the concept 

Ψ

ΨΨ
dt

td i )(
 (speed), where  denotes an arbitrary body which is in uniform straight 

motion relatively to  and .  

i

Φ Ψ

Proof. Let us prove that generalized speed whose criterion body is α  satisfies the 

following three properties: 

(1) Symmetry: The generalized speed of Φ  relatively to Ψ  
α

α Ψ
Ψ

= Φ
Φ d

dW  is numerically 

identical with the generalized speed of Ψ  relatively to Φ  
α

α Φ
Φ

= Ψ
Ψ d

dV . 

(2) Constancy of the generalized speed of light: The generalized speed of β  relatively 

to  Φ
α

β
βα Φ

Φ
=

d
d

V  and the generalized speed of β  relatively to Ψ  
α

β
βα Ψ

Ψ
=

d
d

W  are 

a determined constant, where β  denotes a ray of light which is emitted from an 
arbitrary body which is in uniform straight motion relatively to Φ  and . (we 
assume that 

Ψ
0)0( =βφ , 0)0( =βψ )  

(3) Numerical value: The generalized speed of i  relatively to  Φ
α

α Φ
Φ

=
d
d

V i
i  is 

numerically identical with the speed of i  relatively to Φ  
Φ

Φ
=

dt
d

v i  (here we set 

Φ

Φ
=

dt
d

v i ), and the generalized speed of i  relatively to Ψ  
α

α Ψ
Ψ

=
d
d

W i
i  is 

numerically identical with the speed of i  relatively to Ψ  
Ψ

Ψ
=

dt
d

w i  (here we set 

Ψ

Ψ
=

dt
d

w i ), where i  denotes an arbitrary body which is in uniform straight motion 

relatively to  and .  Φ Ψ
First, let us prove that generalized speed whose criterion body is α  satisfies the 

property (1). This directly follows from the definition of absolute criterion and 

theorem1. From theorem2, we also see that generalized speed whose criterion body is 
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not a ray of light doesn’t satisfy this property. Next, let us prove that generalized speed 

whose criterion body is α  satisfies the property (2). To do this, let us calculate the 

generalized speed of β  relatively to Φ  
α

β
βα Φ

Φ
=

d
d

V . While α  moves c [m] relatively 

to , as judged from Φ , the time 1[s] elapses, because c [m/s] is the speed of Φ α  

relatively to . Then, by the principle of the constancy of the speed of light, Φ β  also 

moves [m] relatively to  in this time interval 1[s]. Thus the generalized speed c Φ

α

β
βα Φ

Φ
=

d
d

V  is given by 1==
Φ

Φ
=

c
c

d
d

V
α

β
βα  [dimensionless]. Similarly, we obtain also 

1=
Ψ

Ψ
=

α

β
βα d

d
W  [dimensionless]. Therefore we obtain 1== βαβαV W . This formula 

shows that the generalized speed of a ray of light is a determined constant 1. Finally, let 

us prove that generalized speed whose criterion body is α  satisfies the property (3). Let 

 [m/s] be the speed of  relatively to v i Φ . Then the generalized speed of  relatively to 

 

i

Φ
α

α Φ
Φ

=
d
d

V i
i  is given by 

c
v

d
d

V i
i =

Φ
Φ

=
α

α  [dimensionless]. Thus there exists an 

apparent incompatibility of the generalized speed of  with the speed of i . However, it 

is not a fundamental problem how we define a time interval 1[s]. If we define a time 

interval 1[s] as the time that light needs to move 1[m], the speed of i  relatively to  is 

given by 

i

Φ

c
v

dt
d i =
Φ

Φ

 [m/s]. Then the generalized speed of  relatively to Φ  is 

numerically identical with the speed of  relatively to 

i

i Φ . From the foregoing three 

proofs, we conclude that the theorem3 was proved. 
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The theorem3 states that the inertial observer Φ  may regard generalized speed whose 

criterion body is proper criterion of Φ  as speed, and that the inertial observer Ψ  may 

regard generalized speed whose criterion body is proper criterion of Ψ  as speed. 

The previous theorem leads us to the main result of the second half of the paper. We 

again give our attention to their parameters. 

Theorem4. Let a ray of light α  be an absolute criterion. Then, the parameter [m] is 

equivalent to the parameter [s], and the parameter 

αΦ

Φt αΨ [m] is equivalent to the 

parameter [s]. In other words, the proper criterion of Ψt Φ  ),( Φα  is equivalent to the 

proper time of , and the proper criterion of Φ Ψ  ),( Ψα  is equivalent to the proper time 

of Ψ . 

The equivalence as a parameter between αΦ ( )αΨ  and  Φt ( )Ψt  entitles the inertial 

observer ( ) to regard the passage of time as the propagation of the ray of light Φ Ψ α . 

In the special theory of relativity, a unit of time is chosen so that the speed of light 

becomes equal to unity. To choose a unit of time so that the speed of light becomes 

equal to unity is to choose a ray of light as criterion body, which means that our 

assertion that the passage of time is the motion of criterion body is formally recorded in 

the special theory of relativity. Therefore we see that the abandonment of the hypothesis 

retains the form of the special theory of relativity. 

1. Weyl, H. Space-Time-Matter (Dover, New York, 1952) 
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