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The Kitaev Hamiltonian reads

H = −
∑

λ=x,y,z

∑
<m,n>λ

Jλσλ
mσλ

n = iJ
∑

λ=x,y,z

∑
<m,n>λ

û<m,n>λ
cmcn, (1)

where < m, n >λ (λ = x, y, z) each run over a different set of L/2 nearest-neighbor bonds between

the λ components of the Pauli matrices (σx
l , σy

l , σz
l ) (l = 1, · · · , L), which can be expressed in terms

of four Majorana fermions, σλ
l = iηλ

l cl, to introduce bond operators, û<m,n>λ
≡ iηλ

mηλ
n. Since

[û<m,n>λ
, H ] = 0 and û2

<m,n>λ
= 1, û<m,n>λ

reads a Z2 classical variable. The eigenspectrum

of (1) depends on {u<m,n>λ
= ±1} only through {Wp = ±1} with the flux operator defined as

Ŵp ≡ eiΦ̂p =
∏

<m,n>λ∈∂p

σλ
mσλ

n = (−i)Np

∏
<m,n>λ∈∂p

û<m,n>λ
. (2)

We set this model in various polyhedral (Fig. 1) and planar (Fig. 2) geometries and de-
scribe its Raman responses in terms of projective symmetry groups intending to identify the
Majorana spinons singly. Parton single excitations in Kitaev spin polyhedra are characterized
by double-valued irreducible representations of their belonging projective symmetry groups P̃,
whereas parton geminate excitations relevant to Raman scattering are decomposed into single-
valued irreducible representations of the corresponding point symmetry groups P (Table I). We
combine a standard point-symmetry-group analysis of the Loudon-Fleury vertices and an elabo-
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FIG. 1. Kitaev spin balls consisting of dodecahedral

(a), truncated tetrahedral (b), and truncated octahe-

dral (c) lattices in their ground flux configurations. The

ground state of the truncated octahedron (c) is unique,

whereas those of the dodecahedron (a) and the truncated

tetrahedron (b) are both degenerate [1] with their con-

stituent pentagons arrangeable into either {Wp = +i; p =

1, · · · , 12} or {Wp = −i; p = 1, · · · , 12} and triangles

arrangeable into either {Wp = +i; p = 1, · · · , 4} or

{Wp = −i; p = 1, · · · , 4}.
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FIG. 2. Kitaev models consisting of the

pure (a)-, triangle (b)-, square-hexagon (c)-

honeycomb and diamond-square (d) lat-

tices in their ground flux configurations.

The ground state of (b) is degenerate [1]

with its constituent triangles arrangeable

into either {Wp = +i; p = 1, · · · , L
3
} or

{Wp = −i; p = 1, · · · , L
3
}.



TABLE I. Spinon-geminate-excitation-relevant direct-product representations made of double-valued irre-

ducible representations �Ξi⊗ �Ξj and their decompositions into single-valued irreducible representations �Ξk,

which are doubly or singly underlined when they are relevant to inelastic (Raman) or elastic (Rayleigh)

scatterings, for various double groups �P. Note that �Ξk of �P is nothing but Ξk of P.
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FIG. 3. Spinon excitation energies εk and Raman intensities I(ω) of Kitaev spin balls consisting of

dodecahedral (a), truncated-tetrahedral (b), and truncated-octahedral (c) lattices in their ground flux

configurations, where δ-function peaks are Lorentzian-broadened by 0.05J . The eigenenergy, multiplicity,

and irreducible representation are specified beside each eigenlevel. For the incident polarization ( π
2
, π

2
),

we observe various scattered polarizations (π
2
, lπ

4
) (l = 0, 1, 2), each consisting of peaks attributable to

direct-product representations of the projective symmetry groups �I, �T, and �Oh ( �Ξi ⊗ �Ξj in Table I) on

one hand and containing one or more irreducible representations of the point symmetry groups I, T, and

Oh (
�

k Ξk in Table I) on the other hand.

rate projective-symmetry-group analysis of itinerant spinons against the ground gauge fields to
reveal hidden selection rules for Raman scattering in Z2 spin liquids (Fig. 3) [2]. By Z2-gauging
the subgroup P′

k of the k-point symmetry group Pk at a high symmetry point k of the reciprocal
lattice, which keeps the gauge-ground Majorana Hamiltonian [cf. the rightmost side of Eq. (1)]
invariant under the Fourier transformation corresponding to k, we can extend the same analysis
to planar Kitaev spin models [3].
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